Neutrophil-inspired photothermo-responsive drug delivery system for targeted treatment of bacterial infection and endotoxins neutralization.

Chengnan Li, Yingying Gan, Zongshao Li, Mengjing Fu, Yuzhen Li, Xinran Peng, Yongqiang Yang, Guo-Bao Tian, Yi Yan Yang, Peiyan Yuan, Xin Ding
Author Information
  1. Chengnan Li: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
  2. Yingying Gan: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
  3. Zongshao Li: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
  4. Mengjing Fu: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
  5. Yuzhen Li: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
  6. Xinran Peng: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
  7. Yongqiang Yang: Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, 610041, China.
  8. Guo-Bao Tian: Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China.
  9. Yi Yan Yang: Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore. yyyang@bti.a-star.edu.sg.
  10. Peiyan Yuan: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China. yuanpy3@mail.sysu.edu.cn.
  11. Xin Ding: School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China. dingxin3@mail.sysu.edu.cn.

Abstract

BACKGROUND: P. aeruginosa, a highly virulent Gram-negative bacterium, can cause severe nosocomial infections, and it has developed resistance against most antibiotics. New therapeutic strategies are urgently needed to treat such bacterial infection and reduce its toxicity caused by endotoxin (lipopolysaccharide, LPS). Neutrophils have been proven to be able to target inflammation site and neutrophil membrane receptors such as Toll-like receptor-4 (TLR4) and CD14, and exhibit specific affinity to LPS. However, antibacterial delivery system based on the unique properties of neutrophils has not been reported.
METHODS: A neutrophil-inspired antibacterial delivery system for targeted photothermal treatment, stimuli-responsive antibiotic release and endotoxin neutralization is reported in this study. Specifically, the photothermal reagent indocyanine green (ICG) and antibiotic rifampicin (RIF) are co-loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP-ICG/RIF), followed by coating with neutrophil membrane to obtain antibacterial delivery system (NM-NP-ICG/RIF). The inflammation targeting properties, synergistic antibacterial activity of photothermal therapy and antibiotic treatment, and endotoxin neutralization have been studied in vitro. A P. aeruginosa-induced murine skin abscess infection model has been used to evaluate the therapeutic efficacy of the NM-NP-ICG/RIF.
RESULTS: Once irradiated by near-infrared lasers, the heat generated by NP-ICG/RIF triggers the release of RIF and ICG, resulting in a synergistic chemo-photothermal antibacterial effect against P. aeruginosa (~ 99.99% killing efficiency in 5 min). After coating with neutrophil-like cell membrane vesicles (NMVs), the nanoparticles (NM-NP-ICG/RIF) specifically bind to inflammatory vascular endothelial cells in infectious site, endowing the nanoparticles with an infection microenvironment targeting function to enhance retention time. Importantly, it is discovered for the first time that NMVs-coated nanoparticles are able to neutralize endotoxins. The P. aeruginosa murine skin abscess infection model further demonstrates the in vivo therapeutic efficacy of NM-NP-ICG/RIF.
CONCLUSION: The neutrophil-inspired antibacterial delivery system (NM-NP-ICG/RIF) is capable of targeting infection microenvironment, neutralizing endotoxin, and eradicating bacteria through a synergistic effect of photothermal therapy and antibiotic treatment. This drug delivery system made from FDA-approved compounds provides a promising approach to fighting against hard-to-treat bacterial infections.

Keywords

References

  1. Adv Mater. 2018 May;30(22):e1706245 [PMID: 29577477]
  2. Biomater Sci. 2020 Aug 21;8(16):4616-4625 [PMID: 32676631]
  3. Nat Microbiol. 2019 Dec;4(12):2146-2154 [PMID: 31611643]
  4. Acta Biomater. 2021 Mar 15;123:354-363 [PMID: 33476827]
  5. ACS Nano. 2017 Feb 28;11(2):1397-1411 [PMID: 28075552]
  6. BMC Infect Dis. 2020 Jan 30;20(1):92 [PMID: 32000693]
  7. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11488-11493 [PMID: 29073076]
  8. Nat Rev Drug Discov. 2020 Apr;19(4):253-275 [PMID: 31969717]
  9. Nat Commun. 2020 Jul 15;11(1):3547 [PMID: 32669546]
  10. Nat Rev Microbiol. 2021 May;19(5):331-342 [PMID: 33214718]
  11. Front Immunol. 2018 May 28;9:1154 [PMID: 29892293]
  12. Lancet Infect Dis. 2018 Dec;18(12):1319-1328 [PMID: 30509675]
  13. Nat Med. 2011 Nov 07;17(11):1381-90 [PMID: 22064428]
  14. Adv Drug Deliv Rev. 2021 May;172:339-360 [PMID: 33705882]
  15. Blood. 2020 Nov 5;136(19):2200-2205 [PMID: 32730588]
  16. J Infect Dis. 2021 Aug 16;224(4):726-733 [PMID: 33349847]
  17. Bioact Mater. 2022 Mar 23;18:1-14 [PMID: 35387158]
  18. J Infect Dis. 2011 Mar 15;203(6):780-90 [PMID: 21252259]
  19. ACS Infect Dis. 2022 Sep 9;8(9):1731-1757 [PMID: 35946799]
  20. Bioact Mater. 2022 Mar 31;18:526-538 [PMID: 35415298]
  21. Nat Commun. 2016 Aug 31;7:12658 [PMID: 27578049]
  22. Biomaterials. 2017 May;126:49-60 [PMID: 28254693]
  23. Biomater Res. 2021 Dec 20;25(1):44 [PMID: 34930494]
  24. Nature. 2014 Oct 9;514(7521):187-92 [PMID: 25119034]
  25. Adv Sci (Weinh). 2020 Jul 21;7(17):2001374 [PMID: 32995131]
  26. Nat Rev Immunol. 2013 Mar;13(3):159-75 [PMID: 23435331]
  27. Curr Opin Infect Dis. 2020 Dec;33(6):464-473 [PMID: 33148986]
  28. Biomaterials. 2017 Aug;135:62-73 [PMID: 28494264]
  29. Cell Mol Bioeng. 2019;12(1):121-130 [PMID: 30740185]
  30. Bioact Mater. 2021 Jun 11;8:368-380 [PMID: 34541407]
  31. Adv Sci (Weinh). 2021 Mar 16;8(10):2002787 [PMID: 34026432]
  32. Curr Opin Immunol. 2017 Feb;44:14-19 [PMID: 27842237]
  33. J Control Release. 2015 Feb 10;199:53-62 [PMID: 25499553]
  34. Front Immunol. 2017 Feb 06;8:81 [PMID: 28220120]
  35. Int J Med Microbiol. 2016 Jan;306(1):48-58 [PMID: 26687205]
  36. ACS Infect Dis. 2020 Jun 12;6(6):1413-1426 [PMID: 32357292]
  37. Adv Mater. 2021 Aug;33(31):e2007630 [PMID: 34050564]
  38. Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10399-E10408 [PMID: 29133417]
  39. J Colloid Interface Sci. 2020 Oct 1;577:66-74 [PMID: 32473477]
  40. Front Microbiol. 2019 May 03;10:913 [PMID: 31130925]
  41. Biomater Res. 2022 Dec 5;26(1):72 [PMID: 36471454]
  42. Nano Lett. 2014;14(4):2181-8 [PMID: 24673373]
  43. Adv Sci (Weinh). 2019 May 28;6(15):1802333 [PMID: 31406662]
  44. Adv Mater. 2019 Feb;31(7):e1806024 [PMID: 30589118]
  45. Bioact Mater. 2021 Aug 27;9:183-197 [PMID: 34820565]
  46. Cell. 2016 May 19;165(5):1106-1119 [PMID: 27156449]
  47. Nat Commun. 2019 Apr 3;10(1):1520 [PMID: 30944318]
  48. ACS Nano. 2021 Feb 23;15(2):2263-2280 [PMID: 33426885]
  49. Adv Drug Deliv Rev. 2021 Dec;179:113905 [PMID: 34331988]
  50. Nat Nanotechnol. 2018 Dec;13(12):1182-1190 [PMID: 30177807]
  51. Carbohydr Polym. 2019 Dec 1;225:115228 [PMID: 31521288]

Grants

  1. 81830103/National Natural Science Foundation of China
  2. 52072418/National Natural Science Foundation of China
  3. 2022A1515010977/Natural Science Foundation of Guangdong Province
  4. JCYJ20200109142401698/Science, Technology and Innovation Commission of Shenzhen Municipality
  5. JCYJ20190807151807459, JCYJ20210324124214038/Science, Technology and Innovation Commission of Shenzhen Municipality

Word Cloud

Created with Highcharts 10.0.0deliveryinfectionantibacterialsystemNM-NP-ICG/RIFPaeruginosaendotoxinmembranephotothermaltreatmentantibioticneutralizationnanoparticlestherapeuticbacterialtargetingsynergisticinfectionsLPSableinflammationsiteneutrophilpropertiesreportedneutrophil-inspiredtargetedreleaseICGRIFNP-ICG/RIFcoatingtherapymurineskinabscessmodelefficacyeffectmicroenvironmenttimeendotoxinsdrugBACKGROUND:highlyvirulentGram-negativebacteriumcancauseseverenosocomialdevelopedresistanceantibioticsNewstrategiesurgentlyneededtreatreducetoxicitycausedlipopolysaccharideNeutrophilsproventargetreceptorsToll-likereceptor-4TLR4CD14exhibitspecificaffinityHoweverbaseduniqueneutrophilsMETHODS:stimuli-responsivestudySpecificallyreagentindocyaninegreenrifampicinco-loadedpolylactic-co-glycolicacidPLGAfollowedobtainactivitystudiedvitroaeruginosa-inducedusedevaluateRESULTS:irradiatednear-infraredlasersheatgeneratedtriggersresultingchemo-photothermal~ 9999%killingefficiency5 minneutrophil-likecellvesiclesNMVsspecificallybindinflammatoryvascularendothelialcellsinfectiousendowingfunctionenhanceretentionImportantlydiscoveredfirstNMVs-coatedneutralizedemonstratesvivoCONCLUSION:capableneutralizingeradicatingbacteriamadeFDA-approvedcompoundsprovidespromisingapproachfightinghard-to-treatNeutrophil-inspiredphotothermo-responsiveDrugEndotoxinNeutrophilPhotothermalPseudomonas

Similar Articles

Cited By (4)