Using Solution History to Control Hydrogel Properties of a Perylene Bisimide.

Rebecca E Ginesi, Nicholas R Murray, Robert M Dalgliesh, James Doutch, Emily R Draper
Author Information
  1. Rebecca E Ginesi: School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK. ORCID
  2. Nicholas R Murray: School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK. ORCID
  3. Robert M Dalgliesh: ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK. ORCID
  4. James Doutch: ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK. ORCID
  5. Emily R Draper: School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK. ORCID

Abstract

pH dependence on water soluble aggregates is well-known in the field of low molecular weight gelators (LMWGs), with different aggregates sometimes having very different properties depending on their final pH. This aggregation determines their applications and performance. Here, we investigate the pH dependence of perylene bisimide gels; initially solutions are formed at a high pH and gels form as the pH is decreased. We find it is not only the final pH but also the starting pH that can impact the resulting gel. We use small angle neutron scattering (SANS), rheology, H NMR spectroscopy and absorption spectroscopy to examine the effect of starting pH on gelation kinetics and final gel properties. Adjusting the solution from pH 9 (where there are few or no aggregates) to pH 6 results in the formation of different worm-like micelles than the ones directly formed at pH 6, leading to again gels with different mechanical properties. This work highlights the importance of controlling the pH of solutions before gelation, but also opens up more possible morphologies and therefore more properties from the same molecule.

Keywords

References

  1. Langmuir. 2011 Sep 20;27(18):11364-71 [PMID: 21823641]
  2. Chem Rev. 2014 Feb 26;114(4):1973-2129 [PMID: 24400783]
  3. J Phys Chem B. 2012 Aug 23;116(33):10070-8 [PMID: 22759276]
  4. J Am Chem Soc. 2018 Feb 28;140(8):2869-2874 [PMID: 29406709]
  5. Chem Soc Rev. 2013 Sep 7;42(17):7391-420 [PMID: 23677178]
  6. Langmuir. 2019 May 21;35(20):6506-6521 [PMID: 31038973]
  7. Chem Sci. 2020 May 29;11(22):5836 [PMID: 34106096]
  8. Chem Soc Rev. 2009 Apr;38(4):883-91 [PMID: 19421568]
  9. Chem Rev. 2015 Dec 23;115(24):13165-307 [PMID: 26646318]
  10. Nanoscale. 2019 Aug 29;11(34):15917-15928 [PMID: 31414112]
  11. Langmuir. 2010 Apr 6;26(7):5232-42 [PMID: 19921840]
  12. Adv Sci (Weinh). 2020 Jul 26;7(18):2001986 [PMID: 32999853]
  13. Soft Matter. 2015 Oct 21;11(39):7739-47 [PMID: 26313637]
  14. Chemphyschem. 2021 Nov 4;22(21):2256-2261 [PMID: 34288310]
  15. Angew Chem Int Ed Engl. 2012 Jun 25;51(26):6328-48 [PMID: 22573415]
  16. Chem Soc Rev. 2013 Jun 21;42(12):5143-56 [PMID: 23571407]
  17. Chemistry. 2018 Mar 15;24(16):4006-4010 [PMID: 29405458]
  18. Chem Rev. 2016 Feb 10;116(3):962-1052 [PMID: 26270260]
  19. ACS Nano. 2018 Jun 26;12(6):5800-5806 [PMID: 29869880]
  20. Mater Sci Eng R Rep. 2015 Jul;93:1-49 [PMID: 27134415]
  21. Angew Chem Int Ed Engl. 2016 Sep 19;55(39):12094-8 [PMID: 27558471]
  22. Chemistry. 2023 Jul 3;29(37):e202301042 [PMID: 37067953]
  23. Chemistry. 2019 Jun 12;25(33):7881-7887 [PMID: 30945773]
  24. Chemistry. 2022 Sep 1;28(49):e202201725 [PMID: 35722972]
  25. Chem Commun (Camb). 2016 Jul 7;52(53):8196-206 [PMID: 27222364]
  26. J Am Chem Soc. 2015 Mar 11;137(9):3360-5 [PMID: 25679407]
  27. J Mater Chem B. 2017 Dec 21;5(47):9412-9417 [PMID: 32264544]
  28. Chem Soc Rev. 2017 Sep 18;46(18):5474-5475 [PMID: 28884760]
  29. Nat Chem. 2014 Nov;6(11):964-70 [PMID: 25343600]
  30. Acc Chem Res. 2020 Feb 18;53(2):496-507 [PMID: 32027125]
  31. Faraday Discuss. 2013;166:101-16 [PMID: 24611271]
  32. Soft Matter. 2022 Feb 23;18(8):1577-1590 [PMID: 35147629]

Grants

  1. MR/V021087/1/UK Research and Innovation
  2. EP/N509668/1/Engineering and Physical Sciences Research Council
  3. EP/S032673/1/Engineering and Physical Sciences Research Council

Word Cloud

Created with Highcharts 10.0.0pHdifferentpropertiesgelsaggregatesfinaldependencelowmolecularweightgelatorsperylenebisimidesolutionsformedalsostartinggelspectroscopygelationkineticspH 6watersolublewell-knownfieldLMWGssometimesdependingaggregationdeterminesapplicationsperformanceinvestigateinitiallyhighformdecreasedfindcanimpactresultingusesmallangleneutronscatteringSANSrheologyH NMRabsorptionexamineeffectAdjustingsolutionpH 9resultsformationworm-likemicellesonesdirectlyleadingmechanicalworkhighlightsimportancecontrollingopenspossiblemorphologiesthereforemoleculeUsingSolutionHistoryControlHydrogelPropertiesPeryleneBisimideself-assembly

Similar Articles

Cited By