Altitude, not potential larval habitat availability, explains pronounced variation in Plasmodium falciparum infection prevalence in the western Kenya highlands.

Colins O Oduma, Maurice Ombok, Xingyuan Zhao, Tiffany Huwe, Bartholomew N Ondigo, James W Kazura, John Grieco, Nicole Achee, Fang Liu, Eric Ochomo, Cristian Koepfli
Author Information
  1. Colins O Oduma: Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.
  2. Maurice Ombok: Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.
  3. Xingyuan Zhao: Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States of America. ORCID
  4. Tiffany Huwe: Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America. ORCID
  5. Bartholomew N Ondigo: Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.
  6. James W Kazura: Case Western Reserve University, Center for Global Health and Diseases, Cleveland, OH, United States of America. ORCID
  7. John Grieco: Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America.
  8. Nicole Achee: Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America. ORCID
  9. Fang Liu: Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States of America.
  10. Eric Ochomo: Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.
  11. Cristian Koepfli: Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America. ORCID

Abstract

Progress in malaria control has stalled over the recent years. Knowledge on main drivers of transmission explaining small-scale variation in prevalence can inform targeted control measures. We collected finger-prick blood samples from 3061 individuals irrespective of clinical symptoms in 20 clusters in Busia in western Kenya and screened for Plasmodium falciparum parasites using qPCR and microscopy. Clusters spanned an altitude range of 207 meters (1077-1284 m). We mapped potential mosquito larval habitats and determined their number within 250 m of a household and distances to households using ArcMap. Across all clusters, P. falciparum parasites were detected in 49.8% (1524/3061) of individuals by qPCR and 19.5% (596/3061) by microscopy. Across the clusters, prevalence ranged from 26% to 70% by qPCR. Three to 34 larval habitats per cluster and 0-17 habitats within a 250m radius around households were observed. Using a generalized linear mixed effect model (GLMM), a 5% decrease in the odds of getting infected per each 10m increase in altitude was observed, while the number of larval habitats and their proximity to households were not statistically significant predictors for prevalence. Kitchen located indoors, open eaves, a lower level of education of the household head, older age, and being male were significantly associated with higher prevalence. Pronounced variation in prevalence at small scales was observed and needs to be taken into account for malaria surveillance and control. Potential larval habitat frequency had no direct impact on prevalence.

References

  1. PLOS Glob Public Health. 2022 Jul 28;2(7):e0000828 [PMID: 36962426]
  2. Malar J. 2020 Jun 23;19(1):221 [PMID: 32576188]
  3. J Med Entomol. 2003 Sep;40(5):706-17 [PMID: 14596287]
  4. Malar J. 2014 Sep 30;13:387 [PMID: 25269827]
  5. Sci Rep. 2021 Aug 16;11(1):16540 [PMID: 34400687]
  6. Malar J. 2018 Sep 26;17(1):340 [PMID: 30257697]
  7. BMC Infect Dis. 2021 Jan 9;21(1):44 [PMID: 33422001]
  8. Parasit Vectors. 2011 Jun 17;4:110 [PMID: 21682875]
  9. Exp Parasitol. 1996 Apr;82(3):306-15 [PMID: 8631382]
  10. JAMA. 2005 Mar 23;293(12):1461-70 [PMID: 15784869]
  11. Malar J. 2006 Nov 03;5:98 [PMID: 17081311]
  12. PLoS Negl Trop Dis. 2021 May 3;15(5):e0009371 [PMID: 33939717]
  13. PLoS Med. 2015 Mar 03;12(3):e1001788 [PMID: 25734259]
  14. Malar J. 2020 May 7;19(1):175 [PMID: 32381005]
  15. Elife. 2020 Oct 27;9: [PMID: 33107430]
  16. Malar J. 2018 Mar 13;17(1):111 [PMID: 29534709]
  17. PLoS One. 2013 Aug 14;8(8):e71638 [PMID: 23977099]
  18. Ethiop J Health Sci. 2021 Mar;31(2):247-256 [PMID: 34158776]
  19. J Infect Dis. 2021 Apr 27;223(12 Suppl 2):S99-S110 [PMID: 33906225]
  20. J Parasitol Res. 2020 Jan 25;2020:3560310 [PMID: 32411419]
  21. Clin Infect Dis. 2018 Jun 1;66(12):1883-1891 [PMID: 29304258]
  22. Malar J. 2016 Nov 4;15(1):527 [PMID: 27809907]
  23. Malar J. 2017 Nov 09;16(1):456 [PMID: 29121931]
  24. Lancet. 2020 Apr 25;395(10233):1361-1373 [PMID: 32334702]
  25. Malar J. 2016 Nov 25;15(1):571 [PMID: 27887652]
  26. Malar J. 2020 Feb 11;19(1):65 [PMID: 32046734]
  27. Malar J. 2016 Apr 14;15:213 [PMID: 27075879]
  28. Parasit Vectors. 2017 Jul 19;10(1):343 [PMID: 28724450]
  29. Am J Epidemiol. 2005 Jan 1;161(1):81-8 [PMID: 15615918]
  30. Malar J. 2020 Sep 22;19(1):344 [PMID: 32962693]
  31. Malar J. 2020 Jul 14;19(1):252 [PMID: 32664939]
  32. Parasit Vectors. 2017 Jun 24;10(1):304 [PMID: 28645303]
  33. Trans R Soc Trop Med Hyg. 1997 Jan-Feb;91(1):8-10 [PMID: 9093615]
  34. PLoS Med. 2010 Jun 15;7(6):e1000290 [PMID: 20563310]
  35. Am J Trop Med Hyg. 2021 Sep 07;105(6):1722-1731 [PMID: 34491213]
  36. Infect Dis Poverty. 2019 Jun 13;8(1):51 [PMID: 31196187]
  37. BMJ Glob Health. 2021 Jun;6(6): [PMID: 34193475]
  38. Clin Infect Dis. 2018 Nov 13;67(11):1670-1676 [PMID: 29846536]
  39. Sci Rep. 2016 Dec 16;6:39183 [PMID: 27982132]
  40. Malar J. 2021 Feb 19;20(1):104 [PMID: 33608004]
  41. Sci Rep. 2018 Aug 3;8(1):11643 [PMID: 30076361]
  42. BMC Infect Dis. 2022 Feb 4;22(1):121 [PMID: 35120441]
  43. Malar J. 2016 Jun 04;15:307 [PMID: 27259286]
  44. J Med Entomol. 2002 Jan;39(1):162-72 [PMID: 11931252]
  45. Malar J. 2018 Feb 21;17(1):90 [PMID: 29466989]
  46. PLoS One. 2011 Apr 21;6(4):e18908 [PMID: 21533048]
  47. Nat Commun. 2021 Feb 10;12(1):909 [PMID: 33568678]
  48. PLoS One. 2013 May 20;8(5):e63830 [PMID: 23700437]
  49. Malar J. 2021 Jul 7;20(1):306 [PMID: 34233690]
  50. Acta Trop. 2015 Oct;150:136-42 [PMID: 26209103]
  51. Int J Infect Dis. 2020 Aug;97:337-346 [PMID: 32534138]
  52. BMJ Open. 2019 Sep 20;9(9):e033883 [PMID: 31542772]
  53. PLoS One. 2012;7(12):e52084 [PMID: 23272215]
  54. Lancet Infect Dis. 2016 Oct;16(10):1134-1144 [PMID: 27394191]
  55. Malar J. 2006 Nov 10;5:107 [PMID: 17096835]
  56. Parasit Vectors. 2019 Jun 11;12(1):295 [PMID: 31186055]
  57. BMC Med. 2017 Jun 30;15(1):121 [PMID: 28662646]
  58. Malar J. 2020 Jun 23;19(1):219 [PMID: 32576200]
  59. PLoS One. 2015 Jul 24;10(7):e0134061 [PMID: 26207758]
  60. J Med Entomol. 2001 Mar;38(2):282-8 [PMID: 11296836]
  61. PLoS Med. 2021 Sep 8;18(9):e1003727 [PMID: 34495978]
  62. Malar J. 2003 Sep 10;2:28 [PMID: 14585106]
  63. Am J Trop Med Hyg. 2021 Feb 08;104(4):1359-1370 [PMID: 33556042]
  64. PLoS Med. 2020 Oct 29;17(10):e1003370 [PMID: 33119589]
  65. Parasit Vectors. 2021 Apr 7;14(1):193 [PMID: 33827667]
  66. Malar J. 2019 Mar 15;18(1):81 [PMID: 30876413]
  67. Malar J. 2018 Oct 26;17(1):390 [PMID: 30367636]
  68. Parasit Vectors. 2014 Jun 09;7:265 [PMID: 24912923]
  69. Malar J. 2009 Jun 24;8:138 [PMID: 19552809]
  70. Lancet Microbe. 2021 Apr;2(4):e141-e150 [PMID: 35544189]
  71. BMC Infect Dis. 2020 Jun 17;20(1):425 [PMID: 32552870]
  72. Trop Med Int Health. 1998 Sep;3(9):706-10 [PMID: 9754665]
  73. PLoS One. 2012;7(3):e32725 [PMID: 22412913]
  74. Nat Commun. 2021 Apr 26;12(1):2443 [PMID: 33903595]
  75. Malar J. 2021 Jul 12;20(1):313 [PMID: 34247643]

Word Cloud

Created with Highcharts 10.0.0prevalencelarvalhabitatscontrolvariationclustersfalciparumqPCRhouseholdsobservedmalariaindividualswesternKenyaPlasmodiumparasitesusingmicroscopyaltitudempotentialnumberwithinhouseholdAcross5%perhabitatProgressstalledrecentyearsKnowledgemaindriverstransmissionexplainingsmall-scalecaninformtargetedmeasurescollectedfinger-prickbloodsamples3061irrespectiveclinicalsymptoms20BusiascreenedClustersspannedrange207meters1077-1284mappedmosquitodetermined250distancesArcMapPdetected498%1524/306119596/3061ranged26%70%Three34cluster0-17250mradiusaroundUsinggeneralizedlinearmixedeffectmodelGLMMdecreaseoddsgettinginfected10mincreaseproximitystatisticallysignificantpredictorsKitchenlocatedindoorsopeneaveslowerleveleducationheadolderagemalesignificantlyassociatedhigherPronouncedsmallscalesneedstakenaccountsurveillancePotentialfrequencydirectimpactAltitudeavailabilityexplainspronouncedinfectionhighlands

Similar Articles

Cited By