Stomatal responses of terrestrial plants to global change.

Xingyun Liang, Defu Wang, Qing Ye, Jinmeng Zhang, Mengyun Liu, Hui Liu, Kailiang Yu, Yujie Wang, Enqing Hou, Buqing Zhong, Long Xu, Tong Lv, Shouzhang Peng, Haibo Lu, Pierre Sicard, Alessandro Anav, David S Ellsworth
Author Information
  1. Xingyun Liang: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China. ORCID
  2. Defu Wang: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China.
  3. Qing Ye: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China. qye@scbg.ac.cn.
  4. Jinmeng Zhang: School of Geographical Sciences, Jiangsu Second Normal University, Nanjing, 211200, China.
  5. Mengyun Liu: Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, 510520, China.
  6. Hui Liu: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China. ORCID
  7. Kailiang Yu: Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA. ORCID
  8. Yujie Wang: Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA. ORCID
  9. Enqing Hou: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China. ORCID
  10. Buqing Zhong: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China. ORCID
  11. Long Xu: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China.
  12. Tong Lv: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China.
  13. Shouzhang Peng: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China. ORCID
  14. Haibo Lu: Department of Geography, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China. ORCID
  15. Pierre Sicard: ARGANS Ltd, 260 route du Pin Montard, 06410, Biot, France.
  16. Alessandro Anav: ENEA, Climate Modeling Laboratory, CR Casaccia, 301 Via Anguillarese, 00123, Rome, Italy. ORCID
  17. David S Ellsworth: Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.

Abstract

Quantifying the stomatal responses of plants to global change factors is crucial for modeling terrestrial carbon and water cycles. Here we synthesize worldwide experimental data to show that stomatal conductance (g) decreases with elevated carbon dioxide (CO), warming, decreased precipitation, and tropospheric ozone pollution, but increases with increased precipitation and nitrogen (N) deposition. These responses vary with treatment magnitude, plant attributes (ambient g, vegetation biomes, and plant functional types), and climate. All two-factor combinations (except warming + N deposition) significantly reduce g, and their individual effects are commonly additive but tend to be antagonistic as the effect sizes increased. We further show that rising CO and warming would dominate the future change of plant g across biomes. The results of our meta-analysis provide a foundation for understanding and predicting plant g across biomes and guiding manipulative experiment designs in a real world where global change factors do not occur in isolation.

References

  1. New Phytol. 2003 Feb;157(2):175-198 [PMID: 33873640]
  2. Ann Bot. 2018 May 11;121(6):1137-1149 [PMID: 29394303]
  3. Sci Adv. 2019 Jul 31;5(7):eaav5168 [PMID: 31392267]
  4. Trends Plant Sci. 2016 Jan;21(1):16-30 [PMID: 26482956]
  5. Nat Ecol Evol. 2019 May;3(5):772-779 [PMID: 30858592]
  6. Glob Chang Biol. 2015 Nov;21(11):4237-49 [PMID: 26119211]
  7. New Phytol. 2022 Apr;234(2):353-374 [PMID: 35007351]
  8. Science. 1985 Nov 1;230(4725):566-70 [PMID: 17809689]
  9. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4041-6 [PMID: 21330553]
  10. Glob Chang Biol. 2017 Sep;23(9):3781-3793 [PMID: 28181733]
  11. New Phytol. 2021 May;230(4):1421-1434 [PMID: 33496969]
  12. New Phytol. 2013 Dec;200(4):1156-65 [PMID: 24033081]
  13. New Phytol. 2019 Oct;224(1):21-36 [PMID: 31069803]
  14. Plant Cell Environ. 2007 Sep;30(9):1150-62 [PMID: 17661752]
  15. Science. 1997 Jan 24;275(5299):502-9 [PMID: 8999789]
  16. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4035-40 [PMID: 21330552]
  17. Tree Physiol. 1987 Mar;3(1):63-91 [PMID: 14975835]
  18. Sci Rep. 2016 Mar 21;6:23418 [PMID: 26996244]
  19. Annu Rev Plant Biol. 2004;55:591-628 [PMID: 15377233]
  20. New Phytol. 2021 Sep;231(6):2118-2124 [PMID: 34101183]
  21. Nat Ecol Evol. 2019 Sep;3(9):1309-1320 [PMID: 31427733]
  22. J Plant Physiol. 2011 Sep 1;168(13):1550-61 [PMID: 21511363]
  23. Nat Commun. 2020 Oct 14;11(1):5184 [PMID: 33056977]
  24. Proc Natl Acad Sci U S A. 2018 May 15;115(20):5187-5192 [PMID: 29717039]
  25. J Exp Bot. 2017 Mar 1;68(7):1757-1767 [PMID: 28338959]
  26. Plant Cell Environ. 2017 Oct;40(10):2369-2380 [PMID: 28744869]
  27. Oecologia. 2012 May;169(1):1-13 [PMID: 22037993]
  28. Annu Rev Plant Biol. 2015;66:599-622 [PMID: 25621516]
  29. New Phytol. 2013 Jul;199(2):441-451 [PMID: 23550663]
  30. New Phytol. 2019 Jan;221(2):693-705 [PMID: 30144393]
  31. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7222-E7230 [PMID: 27799540]
  32. Glob Chang Biol. 2020 Jun;26(6):3585-3600 [PMID: 32146723]
  33. Glob Chang Biol. 2018 Dec;24(12):5708-5723 [PMID: 30218538]
  34. New Phytol. 2001 Feb;149(2):247-264 [PMID: 33874628]
  35. Ecol Lett. 2017 May;20(5):663-672 [PMID: 28370812]
  36. New Phytol. 2023 Feb;237(4):1229-1241 [PMID: 36373000]
  37. Nature. 2003 Aug 21;424(6951):901-8 [PMID: 12931178]
  38. Plant Physiol. 1988 Jan;86(1):200-3 [PMID: 16665866]
  39. Plant Cell Environ. 2007 Mar;30(3):258-270 [PMID: 17263773]
  40. Int J Mol Sci. 2021 Jun 11;22(12): [PMID: 34208343]
  41. Tree Physiol. 2011 Aug;31(8):808-18 [PMID: 21856655]
  42. Glob Chang Biol. 2017 Oct;23(10):4376-4385 [PMID: 28370946]
  43. Glob Chang Biol. 2012 Sep;18(9):2681-93 [PMID: 24501048]
  44. New Phytol. 2013 Mar;197(4):1077-1094 [PMID: 23346950]
  45. New Phytol. 2022 Feb;233(4):1560-1596 [PMID: 34657301]

MeSH Term

Carbon Dioxide
Photosynthesis
Ecosystem
Climate
Plants
Climate Change

Chemicals

Carbon Dioxide