Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis.

Sung Uk Lee, Bum-Sup Jang, Yi Rang Na, Sun Hwa Lee, Sunwoo Han, Ji Hyun Chang, Hak Jae Kim
Author Information
  1. Sung Uk Lee: Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
  2. Bum-Sup Jang: Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
  3. Yi Rang Na: Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea.
  4. Sun Hwa Lee: Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
  5. Sunwoo Han: Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea.
  6. Ji Hyun Chang: Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea. jh.chang@snu.ac.kr.
  7. Hak Jae Kim: Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea. khjae@snu.ac.kr.

Abstract

The purpose of this study was to investigate the role of Lactobacillus rhamnosus GG (LGG) probiotics in radiation enteritis using in vivo mice. A total of 40 mice were randomly assigned to four groups: control, probiotics, radiotherapy (RT), and RT + probiotics. For the group of probiotics, 0.2 mL of solution that contained 1.0 × 10 colony-forming units (CFU) of LGG was used and orally administered daily until sacrifice. For RT, a single dose of 14 Gy was administered using a 6 mega-voltage photon beam to the abdominopelvic area. Mice were sacrifice at day 4 (S1) and day 7 (S2) after RT. Their jejunum, colon, and stool were collected. A multiplex cytokine assay and 16 s ribosomal RNA amplicon sequencing were then performed. Regarding cytokine concentrations in tissues, pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein-1, showed significantly decreased protein levels in colon tissues of the RT + probiotics group than in the RT alone group (all p < 0.05). As for comparing microbial abundance through alpha-diversity and beta-diversity, no significant differences were observed between the RT + probiotics and RT alone groups, except for an increase in alpha-diversity in the stool of the RT + probiotics group. Upon analysis of differential microbes based on treatment, the dominance of anti-inflammatory-related microbes, such as Porphyromonadaceae, Bacteroides acidifaciens, and Ruminococcus, was observed in the jejunum, colon, and stool of the RT + probiotics group. With regard to predicted metabolic pathway abundances, the pathways associated with anti-inflammatory processes, such as biosynthesis of pyrimidine nucleotides, peptidoglycans, tryptophan, adenosylcobalamin, and propionate, were differentially identified in the RT + probiotics group compared to the RT alone group. Protective effects of probiotics on radiation enteritis were potentially derived from dominant anti-inflammation-related microbes and metabolites.

Keywords

References

  1. Andreyev HJ, Vlavianos P, Blake P, Dearnaley D, Norman AR, Tait D (2005) Gastrointestinal symptoms after pelvic radiotherapy: role for the gastroenterologist? Int J Radiat Oncol Biol Phys 62(5):1464–1471 [DOI: 10.1016/j.ijrobp.2004.12.087]
  2. McGough C, Baldwin C, Frost G, Andreyev HJ (2004) Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br J Cancer 90(12):2278–2287 [DOI: 10.1038/sj.bjc.6601868]
  3. Tharavichtikul E, Meungwong P, Chitapanarux T et al (2014) The association of rectal equivalent dose in 2 Gy fractions (EQD2) to late rectal toxicity in locally advanced cervical cancer patients who were evaluated by rectosigmoidoscopy in Faculty of Medicine, Chiang Mai University. Radiat Oncol J 32(2):57–62 [DOI: 10.3857/roj.2014.32.2.57]
  4. Bismar MM, Sinicrope FA (2002) Radiation enteritis. Curr Gastroenterol Rep 4(5):361–365 [DOI: 10.1007/s11894-002-0005-3]
  5. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693 [DOI: 10.1038/sj.embor.7400731]
  6. Gerassy-Vainberg S, Blatt A, Danin-Poleg Y et al (2018) Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. Gut 67:97–107 [DOI: 10.1136/gutjnl-2017-313789]
  7. Zhao T-S, Xie L-W, Cai S et al (2021) Dysbiosis of Gut Microbiota Is Associated With the Progression of Radiation-Induced Intestinal Injury and Is Alleviated by Oral Compound Probiotics in Mouse Model. Front Cell Infect Microbiol 11:717636. https://doi.org/10.3389/fcimb.2021.717636 [DOI: 10.3389/fcimb.2021.717636]
  8. Ki Y, Kim W, Cho H, Ahn K, Choi Y, Kim D (2014) The effect of probiotics for preventing radiation-induced morphological changes in intestinal mucosa of rats. J Korean Med Sci 29(10):1372–1378 [DOI: 10.3346/jkms.2014.29.10.1372]
  9. Delia P, Sansotta G, Donato V et al (2007) Use of probiotics for prevention of radiation-induced diarrhea. World J Gastroenterol 13(6):912–915 [DOI: 10.3748/wjg.v13.i6.912]
  10. Demirer S, Aydintug S, Aslim B et al (2006) Effects of probiotics on radiation-induced intestinal injury in rats. Nutrition (Burbank, Los Angeles County, Calif) 22:179–186 [DOI: 10.1016/j.nut.2005.08.003]
  11. Salminen E, Elomaa I, Minkkinen J, Vapaatalo H, Salminen S (1988) Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures. Clin Radiol 39:435–437 [DOI: 10.1016/S0009-9260(88)80296-4]
  12. Delia P, Sansotta G, Donato V et al (2002) Prophylaxis of diarrhoea in patients submitted to radiotherapeutic treatment on pelvic district: personal experience. Dig Liver Dis 34(Suppl 2):S84–S86 [DOI: 10.1016/S1590-8658(02)80173-6]
  13. Ciorba MA et al (2012) Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 61(6):829–838 [DOI: 10.1136/gutjnl-2011-300367]
  14. Guo H, Chou WC, Lai Y et al (2020) Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 370(6516):eaay9097
  15. Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22(3):190–199. https://doi.org/10.1016/j.molmed.2016.01.002 [DOI: 10.1016/j.molmed.2016.01.002]
  16. Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79
  17. Zackular JP, Baxter NT, Iverson KD et al (2013) The gut microbiome modulates colon tumorigenesis. mBio 4(6):e00692-13
  18. Fardini Y, Chung P, Dumm R, Joshi N, Han YW (2010) Transmission of diverse oral bacteria to murine placenta: Evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78(4):1789–1796. https://doi.org/10.1128/IAI.01395-09 [DOI: 10.1128/IAI.01395-09]
  19. Willing BP, Dicksved J, Halfvarson J et al (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:1844–54.e1 [DOI: 10.1053/j.gastro.2010.08.049]
  20. Okesli A, Khosla C, Bassik MC (2017) Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy. Curr Opin Biotechnol 48:127–134. https://doi.org/10.1016/j.copbio.2017.03.010 [DOI: 10.1016/j.copbio.2017.03.010]
  21. Matsumoto S, Hara T, Nagaoka M et al (2009) A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology 128:e170–e180 [DOI: 10.1111/j.1365-2567.2008.02942.x]
  22. Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20(5):719–730. https://doi.org/10.1016/j.cmet.2014.10.016 [DOI: 10.1016/j.cmet.2014.10.016]
  23. Averina OV, Poluektova EU, Marsova MV, Danilenko VN (2021) Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota. Biomedicines 9:1340 [DOI: 10.3390/biomedicines9101340]
  24. Schirmer M, Smeekens SP, Vlamakis H et al (2016) Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 167:1125–36.e8 [DOI: 10.1016/j.cell.2016.10.020]
  25. Zheng C, Yu Z, Du C et al (2020) 2-Methylcitrate cycle: a well-regulated controller of Bacillus sporulation. Environ Microbiol 22(3):1125–1140. https://doi.org/10.1111/1462-2920.14901 [DOI: 10.1111/1462-2920.14901]
  26. Tong LC, Wang Y, Wang ZB et al (2016) Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Front Pharmacol 15(7):253. https://doi.org/10.3389/fphar.2016.00253 [DOI: 10.3389/fphar.2016.00253]
  27. Agus A, Richard D, Faïs T et al (2021) Propionate catabolism by CD-associated adherent-invasive E. coli counteracts its anti-inflammatory effect. Gut Microbes 13:1–18 [DOI: 10.1080/19490976.2020.1839318]
  28. LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16:1–10 [DOI: 10.1186/s12934-017-0691-z]
  29. Wang K, Xu X, Maimaiti A et al (2021) Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage. Pharmacol Res Perspect 9(5):e00765. https://doi.org/10.1002/prp2.765 [DOI: 10.1002/prp2.765]
  30. Wang Z, Wang Q, Wang X et al (2019) Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy. J Cell Mol Med 23(5):3747–3756. https://doi.org/10.1111/jcmm.14289 [DOI: 10.1111/jcmm.14289]
  31. Bai AP, Ouyang Q, Xiao XR, Li SF (2006) Probiotics modulate inflammatory cytokine secretion from inflamed mucosa in active ulcerative colitis. Int J Clin Pract 60(3):284–288. https://doi.org/10.1111/j.1368-5031.2006.00833.x [DOI: 10.1111/j.1368-5031.2006.00833.x]
  32. Ott SJ, Musfeldt M, Wenderoth DF et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693 [DOI: 10.1136/gut.2003.025403]
  33. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 6(220):220ra11. https://doi.org/10.1126/scitranslmed.3008051 [DOI: 10.1126/scitranslmed.3008051]
  34. Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16(7):1024–1033. https://doi.org/10.1111/cmi.12308 [DOI: 10.1111/cmi.12308]
  35. Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis In’T Veld JHJ (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41(2):85–101. https://doi.org/10.1016/s0168-1605(98)00044-0 [DOI: 10.1016/s0168-1605(98)00044-0]
  36. Johnson LB, Riaz AA, Adawi D et al (2004) Radiation enteropathy and leucocyte-endothelial cell reactions in a refined small bowel model. BMC Surg 4:10 [DOI: 10.1186/1471-2482-4-10]
  37. Kim YS, Kim J, Park S-J (2015) High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33:1–7 [DOI: 10.1016/j.anaerobe.2015.01.004]
  38. Suzuki T, Yoshida S, Hara H (2008) Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 100(2):297–305 [DOI: 10.1017/S0007114508888733]
  39. Lomax AR, Calder PC (2009) Prebiotics, immune function, infection and inflammation: A review of the evidence. Br J Nutr 101(5):633–658. https://doi.org/10.1017/S0007114508055608 [DOI: 10.1017/S0007114508055608]
  40. Göker M, Gronow S, Zeytun A et al (2011) Complete genome sequence of odoribacter splanchnicus type strain (1651/6 T). Stand Genomic Sci 4(2):200–209. https://doi.org/10.4056/sigs.1714269 [DOI: 10.4056/sigs.1714269]
  41. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543 [DOI: 10.1038/ismej.2012.4]
  42. Weaver LT (1999) Helicobacter pylori in the faeces? QJM 92:361–364 [DOI: 10.1093/qjmed/92.7.361]
  43. Dolan B, Burkitt-Gray L, Shovelin S et al (2018) The use of stool specimens reveals Helicobacter pylori strain diversity in a cohort of adolescents and their family members in a developed country. Int J Med Microbiol 308(2):247–255. https://doi.org/10.1016/j.ijmm.2017.11.005 [DOI: 10.1016/j.ijmm.2017.11.005]
  44. Hamilton-Miller JMT (2003) The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int J Antimicrob Agents 22(4):360–366. https://doi.org/10.1016/s0924-8579(03)00153-5 [DOI: 10.1016/s0924-8579(03)00153-5]
  45. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10(suppl_1):S49–S66. https://doi.org/10.1093/advances/nmy063 [DOI: 10.1093/advances/nmy063]
  46. Heintz-Buschart A, Wilmes P (2018) Human gut microbiome: function matters. Trends Microbiol 26(7):563–574. https://doi.org/10.1016/j.tim.2017.11.002 [DOI: 10.1016/j.tim.2017.11.002]
  47. Jang B-S, Chang JH, Chie EK et al (2020) Gut microbiome composition is associated with a pathologic response after preoperative chemoradiation in patients with rectal cancer. Int J Radiat Oncol Biol Phys 107(4):736–746. https://doi.org/10.1016/j.ijrobp.2020.04.015 [DOI: 10.1016/j.ijrobp.2020.04.015]

Grants

  1. 2019R1A2C1002071/Ministry of Education

MeSH Term

Mice
Animals
Lacticaseibacillus rhamnosus
Cytokines
Enteritis
Interleukin-6
Anti-Inflammatory Agents
Probiotics

Chemicals

Cytokines
Interleukin-6
Anti-Inflammatory Agents

Word Cloud

Created with Highcharts 10.0.0groupRTRT + probioticsprobioticscolonstoolalonemicrobesLactobacillusGGLGGradiationenteritisusingmiceadministeredsacrificedayjejunumcytokinetissuesalpha-diversityobservedanalysisEnteritispurposestudyinvestigaterolerhamnosusvivototal40randomlyassignedfourgroups:controlradiotherapy02 mLsolutioncontained10 × 10colony-formingunitsCFUusedorallydailysingledose14 Gy6mega-voltagephotonbeamabdominopelvicareaMice4S17S2collectedmultiplexassay16 sribosomalRNAampliconsequencingperformedRegardingconcentrationspro-inflammatorycytokinestumornecrosisfactor-αinterleukin-6monocytechemotacticprotein-1showedsignificantlydecreasedproteinlevelsp < 005comparingmicrobialabundancebeta-diversitysignificantdifferencesgroupsexceptincreaseUpondifferentialbasedtreatmentdominanceanti-inflammatory-relatedPorphyromonadaceaeBacteroidesacidifaciensRuminococcusregardpredictedmetabolicpathwayabundancespathwaysassociatedanti-inflammatoryprocessesbiosynthesispyrimidinenucleotidespeptidoglycanstryptophanadenosylcobalaminpropionatedifferentiallyidentifiedcomparedProtectiveeffectspotentiallyderiveddominantanti-inflammation-relatedmetabolitesEffectRhamnosusRegulationInflammatoryResponseRadiation-InducedMicrobiotaProbioticsRadiotherapySequence

Similar Articles

Cited By