Colonization and transmission of in schools: a citizen science project.

Andries J van Tonder, Frances McCullagh, Hanan McKeand, Sue Thaw, Katie Bellis, Claire Raisen, Liz Lay, Dinesh Aggarwal, Mark Holmes, Julian Parkhill, Ewan M Harrison, Adam Kucharski, Andrew Conlan
Author Information
  1. Andries J van Tonder: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  2. Frances McCullagh: Cottenham Village College, Cottenham, UK.
  3. Hanan McKeand: Cottenham Village College, Cottenham, UK.
  4. Sue Thaw: St Bede's Inter-Church School, Cambridge, UK.
  5. Katie Bellis: Wellcome Sanger Institute, Hinxton, UK.
  6. Claire Raisen: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  7. Liz Lay: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  8. Dinesh Aggarwal: Wellcome Sanger Institute, Hinxton, UK.
  9. Mark Holmes: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  10. Julian Parkhill: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  11. Ewan M Harrison: Wellcome Sanger Institute, Hinxton, UK.
  12. Adam Kucharski: Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
  13. Andrew Conlan: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.

Abstract

Aggregation of children in schools has been established to be a key driver of transmission of infectious diseases. Mathematical models of transmission used to predict the impact of control measures, such as vaccination and testing, commonly depend on self-reported contact data. However, the link between self-reported social contacts and pathogen transmission has not been well described. To address this, we used as a model organism to track transmission within two secondary schools in England and test for associations between self-reported social contacts, test positivity and the bacterial strain collected from the same students. Students filled out a social contact survey and their colonization status was ascertained through self-administered swabs from which isolates were sequenced. Isolates from the local community were also sequenced to assess the representativeness of school isolates. A low frequency of genome-linked transmission precluded a formal analysis of links between genomic and social networks, suggesting that transmission within schools is too rare to make it a viable tool for this purpose. Whilst we found no evidence that schools are an important route of transmission, increased colonization rates found within schools imply that school-age children may be an important source of community transmission.

Keywords

References

  1. Mol Biol Evol. 2017 Apr 1;34(4):997-1007 [PMID: 28100788]
  2. Microb Genom. 2016 Aug 25;2(8):e000083 [PMID: 28348874]
  3. J Med Microbiol. 2016 Dec;65(12):1434-1437 [PMID: 27902394]
  4. PLoS Comput Biol. 2013;9(12):e1003397 [PMID: 24367249]
  5. Int J Epidemiol. 1982 Mar;11(1):5-14 [PMID: 7085179]
  6. Genome Biol. 2012 Jun 25;13(6):R56 [PMID: 22731987]
  7. Genome Res. 2008 May;18(5):821-9 [PMID: 18349386]
  8. Lancet Infect Dis. 2022 Jun;22(6):821-834 [PMID: 35298900]
  9. Proc Biol Sci. 2011 May 22;278(1711):1467-75 [PMID: 21047859]
  10. Source Code Biol Med. 2008 Dec 16;3:17 [PMID: 19087314]
  11. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  12. J Med Microbiol. 2013 Mar;62(Pt 3):437-440 [PMID: 23222858]
  13. Genome Biol. 2020 Jul 22;21(1):180 [PMID: 32698896]
  14. PLoS Med. 2013 Oct;10(10):e1001527 [PMID: 24115913]
  15. J Infect. 2014 May;68(5):426-39 [PMID: 24393651]
  16. J Antimicrob Chemother. 2012 Dec;67(12):2809-13 [PMID: 22941897]
  17. Bioinformatics. 2011 Feb 15;27(4):578-9 [PMID: 21149342]
  18. PLoS One. 2015 Jun 01;10(6):e0128070 [PMID: 26030611]
  19. Science. 2000 Jan 28;287(5453):667-70 [PMID: 10650003]
  20. BMC Med. 2020 May 7;18(1):124 [PMID: 32375776]
  21. Microb Genom. 2016 Apr 29;2(4):e000056 [PMID: 28348851]
  22. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  23. Sci Rep. 2021 Jan 27;11(1):2319 [PMID: 33504823]
  24. Nat Commun. 2022 Feb 8;13(1):751 [PMID: 35136068]
  25. Science. 2004 Jan 16;303(5656):327-32 [PMID: 14726583]
  26. Rev Sci Tech. 2016 Apr;35(1):287-96 [PMID: 27217184]
  27. Phys Rev Lett. 2002 Nov 11;89(20):208701 [PMID: 12443515]
  28. Genome Biol. 2014 Mar 03;15(3):R46 [PMID: 24580807]
  29. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7687-92 [PMID: 12032344]
  30. PLoS One. 2018 Jul 25;13(7):e0200090 [PMID: 30044816]
  31. Lancet Infect Dis. 2005 Dec;5(12):751-62 [PMID: 16310147]
  32. Nature. 2008 Apr 10;452(7188):750-4 [PMID: 18401408]
  33. Genome Med. 2016 Oct 3;8(1):102 [PMID: 27716432]
  34. Behaviour. 2018 Jan;155(7-9):759-791 [PMID: 31680698]
  35. Microb Genom. 2017 Sep 4;3(10):e000131 [PMID: 29177089]
  36. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  37. PLoS Med. 2008 Mar 25;5(3):e74 [PMID: 18366252]

Grants

  1. MR/S00291X/1/Medical Research Council
  2. 211864/Z/18/Z/Wellcome Trust

MeSH Term

Child
Humans
Staphylococcus aureus
Citizen Science
Staphylococcal Infections
Schools
England