Development of a PBPK model to quantitatively understand absorption and disposition mechanism and support future clinical trials for PB-201.

Miao Zhang, Zihan Lei, Ziheng Yu, Xueting Yao, Haiyan Li, Min Xu, Dongyang Liu
Author Information
  1. Miao Zhang: Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China. ORCID
  2. Zihan Lei: Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
  3. Ziheng Yu: Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
  4. Xueting Yao: Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
  5. Haiyan Li: Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
  6. Min Xu: PegBio Co., Ltd., Suzhou, Jiangsu, China.
  7. Dongyang Liu: Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China. ORCID

Abstract

PB-201 is the second glucokinase activator in the world to enter the phase III clinical trials for the treatment of type 2 diabetes mellitus (T2DM). Combined with the efficacy advantages and the friendly absorption, distribution, metabolism, and excretion characteristics, the indication population of PB-201 will be broad. Because the liver is the primary organ for PB-201 elimination, and the elderly account for 20% of patients with T2DM, it is essential to estimate PB-201 exposure in specific populations to understand the pharmacokinetic characteristics and avoid hypoglycemia. Despite the limited contribution of CYP3A4 to PB-201 metabolism in vivo, the dual effects of nonspecific inhibitors/inducers on PB-201 (substrate for CYP3A4 and CYP2C9 isoenzymes) exposure under fasted and fed states also need to be evaluated to understand potential risks of combination therapy. To grasp the unknown information, the physiologically-based pharmacokinetic (PBPK) model was first developed and the influence of internal and external factors on PB-201 exposure was evaluated. Results are shown that the predictive performance of the mechanistic PBPK model meets the predefined criteria, and can accurately capture the absorption and disposition characteristics. Impaired liver function and age-induced changes in physiological factors may significantly increase the exposure under fasted state by 36%-158% and 48%-82%, respectively. The nonspecific inhibitor (fluconazole) and inducer (rifampicin) may separately increase/decrease PB-201 systemic exposure by 44% and 58% under fasted state, and by 78% and 47% under fed state. Therefore, the influence of internal and external factors on PB-201 exposure deserves attention, and the precision dose can be informed in future clinical studies based on the predicted results.

References

  1. Mol Pharm. 2018 May 7;15(5):1979-1995 [PMID: 29608318]
  2. Nat Med. 2022 May;28(5):965-973 [PMID: 35551294]
  3. Am J Physiol Endocrinol Metab. 2012 Jan 1;302(1):E87-E102 [PMID: 21952036]
  4. Biochem Pharmacol. 1999 Mar 1;57(5):465-80 [PMID: 9952310]
  5. EClinicalMedicine. 2021 Nov 06;42:101185 [PMID: 34805810]
  6. Curr Drug Metab. 2004 Apr;5(2):157-67 [PMID: 15078193]
  7. Drug Metab Dispos. 2014 Nov;42(11):1926-39 [PMID: 25142735]
  8. South Med J. 1992 Feb;85(2):127-31 [PMID: 1738877]
  9. Drug Metab Dispos. 2011 Mar;39(3):373-82 [PMID: 21148079]
  10. PLoS One. 2017 Mar 28;12(3):e0174291 [PMID: 28350839]
  11. Clin Pharmacokinet. 2013 Dec;52(12):1085-100 [PMID: 23818090]
  12. Diabetes Res Clin Pract. 2022 Jan;183:109119 [PMID: 34879977]
  13. AAPS J. 2021 Feb 22;23(2):31 [PMID: 33619657]
  14. Mech Ageing Dev. 1992 Jun;64(1-2):189-99 [PMID: 1630156]
  15. Clin Pharmacol Drug Dev. 2016 Nov;5(6):517-527 [PMID: 27870481]
  16. Front Physiol. 2019 Mar 06;10:148 [PMID: 30949058]
  17. CPT Pharmacometrics Syst Pharmacol. 2023 Jul;12(7):941-952 [PMID: 37078371]
  18. J Pharm Sci. 2019 Jan;108(1):21-25 [PMID: 30385284]
  19. J Enzyme Inhib Med Chem. 2022 Dec;37(1):606-615 [PMID: 35067153]
  20. Nat Rev Nephrol. 2016 Feb;12(2):73-81 [PMID: 26553517]
  21. Drugs. 2020 Apr;80(5):467-475 [PMID: 32162273]
  22. Front Pharmacol. 2022 Sep 23;13:972411 [PMID: 36210839]
  23. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4372-7 [PMID: 9113996]
  24. J Hepatol. 2019 Oct;71(4):793-801 [PMID: 31279902]
  25. Nat Rev Drug Discov. 2009 May;8(5):399-416 [PMID: 19373249]
  26. CPT Pharmacometrics Syst Pharmacol. 2022 Jul;11(7):805-821 [PMID: 35344639]
  27. Eur J Clin Pharmacol. 2008 Dec;64(12):1147-61 [PMID: 18762933]
  28. Clin Pharmacol Ther. 2008 Jun;83(6):898-903 [PMID: 18388866]
  29. Pharmacol Ther. 2006 Jan;109(1-2):1-11 [PMID: 16085315]
  30. Nat Med. 2022 May;28(5):974-981 [PMID: 35551292]
  31. Diabetes Obes Metab. 2015 Aug;17(8):751-9 [PMID: 25885172]

MeSH Term

Humans
Aged
Diabetes Mellitus, Type 2
Cytochrome P-450 CYP3A
Drug Interactions
Computer Simulation
Rifampin
Models, Biological

Chemicals

Cytochrome P-450 CYP3A
Rifampin

Word Cloud

Created with Highcharts 10.0.0PB-201exposureclinicalabsorptioncharacteristicsunderstandfastedPBPKmodelfactorsstatetrialsT2DMmetabolismliverpharmacokineticCYP3A4nonspecificfedevaluatedinfluenceinternalexternalcandispositionmayfuturesecondglucokinaseactivatorworldenterphaseIIItreatmenttype2diabetesmellitusCombinedefficacyadvantagesfriendlydistributionexcretionindicationpopulationwillbroadprimaryorganeliminationelderlyaccount20%patientsessentialestimatespecificpopulationsavoidhypoglycemiaDespitelimitedcontributionvivodualeffectsinhibitors/inducerssubstrateCYP2C9isoenzymesstatesalsoneedpotentialriskscombinationtherapygraspunknowninformationphysiologically-basedfirstdevelopedResultsshownpredictiveperformancemechanisticmeetspredefinedcriteriaaccuratelycaptureImpairedfunctionage-inducedchangesphysiologicalsignificantlyincrease36%-158%48%-82%respectivelyinhibitorfluconazoleinducerrifampicinseparatelyincrease/decreasesystemic44%58%78%47%ThereforedeservesattentionprecisiondoseinformedstudiesbasedpredictedresultsDevelopmentquantitativelymechanismsupport

Similar Articles

Cited By