Integration of silicon chip microstructures for in-line microbial cell lysis in soft microfluidics.

Pavani Vamsi Krishna Nittala, Allison Hohreiter, Emilio Rosas Linhard, Ryan Dohn, Suryakant Mishra, Abhiteja Konda, Ralu Divan, Supratik Guha, Anindita Basu
Author Information
  1. Pavani Vamsi Krishna Nittala: Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA. ORCID
  2. Allison Hohreiter: Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA. onibasu@uchicago.edu.
  3. Emilio Rosas Linhard: Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA. ORCID
  4. Ryan Dohn: Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA. onibasu@uchicago.edu.
  5. Suryakant Mishra: Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA. ORCID
  6. Abhiteja Konda: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
  7. Ralu Divan: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
  8. Supratik Guha: Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
  9. Anindita Basu: Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA. onibasu@uchicago.edu. ORCID

Abstract

The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that is fabricated with microstructure arrays and embedded in a microfluidic device, which is driven by piezoelectric actuation to perform cell lysis by physically breaking microbial cell walls micromechanical impaction. We present different silicon microarray geometries, their fabrication techniques, integration of said micropatterned silicon impactor chips into microfluidic devices, and device operation and testing on synthetic microbeads and two yeast species ( and ) to evaluate their efficacy. The generalized strategy developed for integration of the micropatterned silicon impactor chip into soft microfluidic devices can serve as an important process step for a new class of hybrid silicon-polymeric devices for future cellular processing applications. The proposed integration methodology can be scalable and integrated as an in-line cell lysis tool with existing microfluidics assays.

References

  1. Lab Chip. 2004 Oct;4(5):516-22 [PMID: 15472738]
  2. J R Soc Interface. 2008 Oct 6;5 Suppl 2:S131-8 [PMID: 18426769]
  3. Colloids Surf B Biointerfaces. 2007 Jul 1;58(1):44-51 [PMID: 17499489]
  4. Lab Chip. 2007 Dec;7(12):1689-95 [PMID: 18030388]
  5. Eukaryot Cell. 2014 Jan;13(1):2-9 [PMID: 24243791]
  6. Nature. 2006 Jul 27;442(7101):368-73 [PMID: 16871203]
  7. BMC Mol Biol. 2006 Aug 04;7:25 [PMID: 16889665]
  8. IEEE Trans Nanobioscience. 2008 Sep;7(3):185-93 [PMID: 18779098]
  9. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D319-22 [PMID: 14681423]
  10. Elife. 2020 May 18;9: [PMID: 32420869]
  11. Anal Bioanal Chem. 2002 Jan;372(1):49-65 [PMID: 11939213]
  12. BMC Mol Biol. 2009 Oct 30;10:99 [PMID: 19874630]
  13. Lab Chip. 2003 Nov;3(4):287-91 [PMID: 15007460]
  14. Electrophoresis. 2000 Jan;21(1):27-40 [PMID: 10634468]
  15. J R Soc Interface. 2015 Jan 6;12(102):20140999 [PMID: 25551144]
  16. Commun Biol. 2021 Jun 30;4(1):822 [PMID: 34193958]
  17. Eur J Dent. 2018 Oct-Dec;12(4):574-578 [PMID: 30369805]
  18. Vaccines (Basel). 2021 Dec 27;10(1): [PMID: 35062691]
  19. Micromachines (Basel). 2021 Apr 28;12(5): [PMID: 33925101]
  20. Lab Chip. 2014 Sep 7;14(17):3135-42 [PMID: 24789374]
  21. Methods Mol Biol. 2007;372:81-90 [PMID: 18314719]
  22. Sci Rep. 2015 Oct 14;5:15167 [PMID: 26464211]
  23. Sci Rep. 2020 Feb 27;10(1):3581 [PMID: 32108170]
  24. Nanoscale. 2018 Apr 5;10(14):6639-6650 [PMID: 29582025]
  25. Nat Commun. 2013;4:2838 [PMID: 24281410]
  26. Electrophoresis. 2007 Dec;28(24):4748-57 [PMID: 18008309]
  27. Lab Chip. 2009 Oct 7;9(19):2811-7 [PMID: 19967118]

Grants

  1. DP2 AI158157/NIAID NIH HHS
  2. P30 DK042086/NIDDK NIH HHS

MeSH Term

Microfluidics
Silicon
Microfluidic Analytical Techniques
Saccharomyces cerevisiae
Lab-On-A-Chip Devices

Chemicals

Silicon

Word Cloud

Created with Highcharts 10.0.0siliconcellmicrofluidicdeviceslysisintegrationsoftmicrobialchipfabricationperformapplicationsmethodologydevicemicropatternedimpactorcanin-linemicrofluidicspaperpresentsmethodologiesintegratecomponentsbiologicalconsistsfabricatedmicrostructurearraysembeddeddrivenpiezoelectricactuationphysicallybreakingwallsmicromechanicalimpactionpresentdifferentmicroarraygeometriestechniquessaidchipsoperationtestingsyntheticmicrobeadstwoyeastspeciesevaluateefficacygeneralizedstrategydevelopedserveimportantprocessstepnewclasshybridsilicon-polymericfuturecellularprocessingproposedscalableintegratedtoolexistingassaysIntegrationmicrostructures

Similar Articles

Cited By