Minor variations in multicellular life cycles have major effects on adaptation.

Hanna Isaksson, Åke Brännström, Eric Libby
Author Information
  1. Hanna Isaksson: Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.
  2. Åke Brännström: Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.
  3. Eric Libby: Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden. ORCID

Abstract

Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.

References

  1. Phys Biol. 2013 Jun;10(3):035001 [PMID: 23735467]
  2. J Biosci. 2014 Apr;39(2):237-48 [PMID: 24736157]
  3. J Theor Biol. 2010 Jan 7;262(1):23-34 [PMID: 19761779]
  4. PLoS Comput Biol. 2019 May 14;15(5):e1006987 [PMID: 31086369]
  5. Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1647-55 [PMID: 11127911]
  6. Evolution. 1992 Apr;46(2):376-380 [PMID: 28564031]
  7. Curr Biol. 2006 Jul 11;16(13):R482-3 [PMID: 16824903]
  8. Trends Ecol Evol. 1998 Mar;13(3):112-6 [PMID: 21238226]
  9. Proc Biol Sci. 1997 Jun 22;264(1383):853-7 [PMID: 9225477]
  10. J R Soc Interface. 2022 Mar;19(188):20210716 [PMID: 35232276]
  11. Dev Biol. 2001 Oct 15;238(2):213-23 [PMID: 11784005]
  12. Philos Trans R Soc Lond B Biol Sci. 2009 Nov 12;364(1533):3143-55 [PMID: 19805423]
  13. PLoS Biol. 2014 May 13;12(5):e1001858 [PMID: 24823361]
  14. PLoS Biol. 2008 Nov 25;6(11):e287 [PMID: 19067487]
  15. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1595-600 [PMID: 22307617]
  16. Nat Ecol Evol. 2019 Aug;3(8):1197-1205 [PMID: 31285576]
  17. Proc Biol Sci. 2012 Sep 7;279(1742):3457-66 [PMID: 22696525]
  18. Science. 2014 Oct 24;346(6208):426-7 [PMID: 25342789]
  19. Curr Opin Microbiol. 2022 Jun;67:102141 [PMID: 35247708]
  20. Proc Biol Sci. 2005 Aug 7;272(1572):1609-16 [PMID: 16108148]
  21. J Theor Biol. 2013 Mar 7;320:10-22 [PMID: 23206384]
  22. Sci Rep. 2019 Feb 20;9(1):2328 [PMID: 30787483]
  23. PLoS Comput Biol. 2021 Sep 13;17(9):e1008896 [PMID: 34516543]
  24. PLoS Comput Biol. 2017 Nov 22;13(11):e1005860 [PMID: 29166656]
  25. Genome Biol. 2009;10(5):218 [PMID: 19519929]
  26. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9113-7 [PMID: 16751277]
  27. Am Nat. 2001 Dec;158(6):638-54 [PMID: 18707357]
  28. Biol Lett. 2022 Jun;18(6):20220059 [PMID: 35728616]
  29. J Theor Biol. 2006 Mar 21;239(2):257-72 [PMID: 16288782]
  30. Science. 2003 Oct 24;302(5645):634-6 [PMID: 14576431]
  31. PLoS One. 2013 Dec 18;8(12):e82274 [PMID: 24367511]
  32. J Exp Zool B Mol Dev Evol. 2021 Apr;336(3):315-326 [PMID: 32198827]
  33. Biochem Soc Trans. 2020 Aug 28;48(4):1505-1518 [PMID: 32677677]
  34. Science. 1995 Jan 6;267(5194):87-90 [PMID: 7809610]
  35. Bioessays. 2005 Mar;27(3):299-310 [PMID: 15714559]
  36. Heredity (Edinb). 2001 Jan;86(Pt 1):1-7 [PMID: 11298810]
  37. Nature. 2002 Dec 19-26;420(6917):745 [PMID: 12490925]
  38. Nat Commun. 2013;4:2742 [PMID: 24193369]
  39. Genes (Basel). 2021 Apr 28;12(5): [PMID: 33924996]
  40. Elife. 2021 Oct 13;10: [PMID: 34643506]
  41. Proc Natl Acad Sci U S A. 1973 May;70(5):1486-9 [PMID: 16592084]
  42. J R Soc Interface. 2011 Dec 7;8(65):1772-84 [PMID: 21593029]
  43. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735): [PMID: 29061893]
  44. Elife. 2022 Sep 13;11: [PMID: 36099169]
  45. Microb Ecol. 2008 Oct;56(3):484-91 [PMID: 18335158]
  46. Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701): [PMID: 27431522]
  47. Nat Commun. 2015 Mar 09;6:6367 [PMID: 25751731]
  48. Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11018-11026 [PMID: 28973893]
  49. PLoS Comput Biol. 2014 Sep 18;10(9):e1003803 [PMID: 25233196]
  50. Nature. 2000 Dec 21-28;408(6815):965-7 [PMID: 11140681]
  51. Am Nat. 2018 Dec;192(6):731-744 [PMID: 30444659]
  52. PLoS Comput Biol. 2012;8(4):e1002468 [PMID: 22511858]
  53. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8913-7 [PMID: 17496139]
  54. PLoS Comput Biol. 2010 Jun 10;6(6):e1000805 [PMID: 20548941]
  55. Trends Ecol Evol. 2006 Feb;21(2):57-60 [PMID: 16701471]
  56. BMC Evol Biol. 2011 Feb 14;11:45 [PMID: 21320320]
  57. Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701): [PMID: 27431523]
  58. Dev Cell. 2004 Sep;7(3):313-25 [PMID: 15363407]
  59. Nature. 2000 Apr 6;404(6778):598-601 [PMID: 10766241]
  60. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735): [PMID: 29061894]
  61. Bioessays. 2010 Oct;32(10):872-80 [PMID: 20726010]
  62. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 [PMID: 17494740]
  63. FEMS Microbiol Rev. 2016 Nov 1;40(6):831-854 [PMID: 28204529]
  64. Trends Cell Biol. 2010 Dec;20(12):734-42 [PMID: 20817460]
  65. J Theor Biol. 1964 Jul;7(1):17-52 [PMID: 5875340]
  66. PLoS Comput Biol. 2020 Nov 19;16(11):e1008406 [PMID: 33211685]
  67. Curr Genet. 2021 Dec;67(6):871-876 [PMID: 34114051]
  68. Biol Lett. 2015 Jun;11(6):20150157 [PMID: 26063749]
  69. Science. 2003 Nov 21;302(5649):1401-4 [PMID: 14631042]
  70. Curr Biol. 2020 Nov 2;30(21):4155-4164.e6 [PMID: 32888478]
  71. Philos Trans R Soc Lond B Biol Sci. 2015 Jul 19;370(1673): [PMID: 26056363]

MeSH Term

Animals
Life Cycle Stages
Models, Theoretical
Biological Evolution
Acclimatization
Phenotype

Word Cloud

Created with Highcharts 10.0.0lifecyclesmulticellularadaptationcanmutationsspreadmanyshowdaughtersMulticellularityevolvedseveralindependenttimespasthundredsmillionsyearsgivenrisewidediversitycomplexRecentstudiesfoundlargedifferencesfundamentalstructureearlyaffectfitnessinfluenceYetunderlyingassumptionscalecategorizationsimilartermsadaptivepotentialconsiderpossibilityexploringclasssimplefilamentousorganismsdifferonerespectdaughterfilamentsproducedusemathematicalmodelsevolutionarysimulationsdespitesimilaritiesqualitativelydifferentfixparticularfindtradeoffcellgrowthgroupsurvivalie"selfish""altruistic"traitsdifferentlySpecificallyaltruisticreadilyproduceproducingeithertypemutationdependingenvironmentresultssubtlechangesfundamentallyalterMinorvariationsmajoreffects

Similar Articles

Cited By (1)