Machine learning to predict virological failure among HIV patients on antiretroviral therapy in the University of Gondar Comprehensive and Specialized Hospital, in Amhara Region, Ethiopia, 2022.

Daniel Niguse Mamo, Tesfahun Melese Yilma, Makida Fekadie, Yakub Sebastian, Tilahun Bizuayehu, Mequannent Sharew Melaku, Agmasie Damtew Walle
Author Information
  1. Daniel Niguse Mamo: Department of Health Informatics, College of Medicine and Health Sciences, School of Public Health, Arbaminch University, Arbaminch, Ethiopia. danielniguse1@gmail.com.
  2. Tesfahun Melese Yilma: Department of Health Informatics, Institute of Public Health, University of Gondar, Gondar, Ethiopia.
  3. Makida Fekadie: Department of Health Informatics, Institute of Public Health, University of Gondar, Gondar, Ethiopia.
  4. Yakub Sebastian: College of Engineering, IT, and Environment, Charles Darwin University, Casuarina, Australia.
  5. Tilahun Bizuayehu: Department of Internal Medicine, School of Medicine, University of Gondar, Gondar, Ethiopia.
  6. Mequannent Sharew Melaku: Department of Health Informatics, Institute of Public Health, University of Gondar, Gondar, Ethiopia.
  7. Agmasie Damtew Walle: Department of Health Informatics, college of health science, Mettu University, Mettu, Ethiopia.

Abstract

BACKGROUND: Treatment with effective antiretroviral therapy (ART) reduces viral load as well as HIV-related morbidity and mortality in HIV-positive patients. Despite the expanded availability of antiretroviral therapy around the world, virological failure remains a serious problem for HIV-positive patients. Thus, Machine learning predictive algorithms have the potential to improve the quality of care and predict the needs of HIV patients by analyzing huge amounts of data, and enhancing prediction capabilities. This study used different machine learning classification algorithms to predict the features that cause virological failure in HIV-positive patients.
METHOD: An institution-based secondary data was used to conduct patients who were on antiretroviral therapy at the University of Gondar Comprehensive and Specialized Hospital from January 2020 to May 2022. Patients' data were extracted from the electronic database using a structured checklist and imported into Python version three software for data pre-processing and analysis. Then, seven supervised classification machine-learning algorithms for model development were trained. The performances of the predictive models were evaluated using accuracy, sensitivity, specificity, precision, f1-score, and AUC. Association rule mining was used to generate the best rule for the association between independent features and the target feature.
RESULT: Out of 5264 study participants, 1893 (35.06%) males and 3371 (64.04%) females were included. The random forest classifier (sensitivity = 1.00, precision = 0.987, f1-score = 0.993, AUC = 0.9989) outperformed in predicting virological failure among all selected classifiers. Random forest feature importance and association rules identified the top eight predictors (Male, younger age, longer duration on ART, not taking CPT, not taking TPT, secondary educational status, TDF-3TC-EFV, and low CD4 counts) of virological failure based on the importance ranking, and the CD-4 count was recognized as the most important predictor feature.
CONCLUSION: The random forest classifier outperformed in predicting and identifying the relevant predictors of virological failure. The results of this study could be very helpful to health professionals in determining the optimal virological outcome.

Keywords

References

  1. MMWR Morb Mortal Wkly Rep. 2021 May 28;70(21):775-778 [PMID: 34043612]
  2. BMJ Open. 2020 Jul 26;10(7):e036223 [PMID: 32713849]
  3. Infect Dis Poverty. 2014 Jan 30;3(1):5 [PMID: 24479873]
  4. PLoS Med. 2016 Jan 05;13(1):e1001934 [PMID: 26731191]
  5. Bull World Health Organ. 2013 May 1;91(5):377-385E [PMID: 23678201]
  6. Lancet HIV. 2020 Sep;7(9):e620-e628 [PMID: 32890497]
  7. HIV AIDS (Auckl). 2020 Dec 14;12:931-939 [PMID: 33363411]
  8. Heliyon. 2019 Jul 20;5(7):e02080 [PMID: 31372545]
  9. BMC Infect Dis. 2014 Apr 04;14:181 [PMID: 24708645]
  10. J Antimicrob Chemother. 2015 Sep;70(9):2639-47 [PMID: 26084302]
  11. BMC Infect Dis. 2017 May 3;17(1):326 [PMID: 28468608]
  12. PLoS One. 2021 Oct 22;16(10):e0258930 [PMID: 34679085]
  13. Biomed Res Int. 2016;2016:6817325 [PMID: 27547761]
  14. SAGE Open Med. 2021 Jun 30;9:20503121211030182 [PMID: 34262767]
  15. AIDS Res Hum Retroviruses. 2017 Dec;33(12):1181-1184 [PMID: 28793781]
  16. Comput Methods Programs Biomed. 2017 Dec;152:149-157 [PMID: 29054255]
  17. Clin Infect Dis. 2001 Aug 15;33(4):466-72 [PMID: 11462181]
  18. Nat Methods. 2018 Apr;15(4):233-234 [PMID: 30100822]
  19. J Infect Dev Ctries. 2021 Jun 30;15(6):853-860 [PMID: 34242197]
  20. Sci Rep. 2021 Dec 15;11(1):24039 [PMID: 34912009]
  21. Braz J Infect Dis. 2013 Jan-Feb;17(1):41-7 [PMID: 23294644]
  22. BMC Genomics. 2020 Jan 2;21(1):6 [PMID: 31898477]
  23. Open Forum Infect Dis. 2022 Mar 09;9(5):ofac121 [PMID: 35434173]
  24. Lancet Infect Dis. 2010 Mar;10(3):155-66 [PMID: 20185094]
  25. PLoS One. 2017 Nov 2;12(11):e0187694 [PMID: 29095936]
  26. BMC Infect Dis. 2019 Dec 3;19(1):1024 [PMID: 31795955]
  27. HIV AIDS (Auckl). 2020 Nov 17;12:749-756 [PMID: 33239920]
  28. J Acquir Immune Defic Syndr. 2017 Feb 1;74 Suppl 2:S128-S131 [PMID: 28079723]
  29. AIDS Res Ther. 2018 Nov 17;15(1):20 [PMID: 30445984]
  30. PLoS One. 2015 Nov 09;10(11):e0142290 [PMID: 26551023]
  31. Pol Arch Intern Med. 2018 Oct 31;128(10):609-616 [PMID: 30387448]
  32. AIDS. 2021 May 1;35(Suppl 1):S19-S28 [PMID: 33867486]
  33. HIV AIDS (Auckl). 2017 Aug 08;9:153-159 [PMID: 28848364]
  34. AIDS. 2021 May 1;35(Suppl 1):S29-S38 [PMID: 33867487]
  35. AIDS Care. 2021 Apr;33(4):530-536 [PMID: 32266825]
  36. Infect Drug Resist. 2020 Jun 18;13:1863-1872 [PMID: 32606835]
  37. HIV Clin Trials. 2017 May;18(3):100-109 [PMID: 28385131]
  38. PLoS One. 2017 Jul 24;12(7):e0179805 [PMID: 28738059]
  39. BMC Med Inform Decis Mak. 2021 Feb 15;21(1):54 [PMID: 33588830]
  40. HIV AIDS (Auckl). 2020 Sep 07;12:393-402 [PMID: 33061655]
  41. BMC Infect Dis. 2020 Jan 2;20(1):4 [PMID: 31898535]
  42. J Int AIDS Soc. 2012 Nov 28;15(2):17985 [PMID: 23199801]
  43. BMC Infect Dis. 2019 Apr 3;19(1):305 [PMID: 30943903]
  44. AIDS. 2014 Sep 10;28(14):2097-107 [PMID: 24977440]
  45. BMC Infect Dis. 2021 May 18;21(1):448 [PMID: 34006230]
  46. PLoS One. 2020 Sep 28;15(9):e0232649 [PMID: 32986709]
  47. J Clin Tuberc Other Mycobact Dis. 2022 Mar 04;27:100310 [PMID: 35284661]
  48. BMC Infect Dis. 2020 Jul 1;20(1):460 [PMID: 32611405]
  49. AIDS Res Ther. 2020 Jul 10;17(1):39 [PMID: 32650796]
  50. PLoS One. 2015 Mar 04;10(3):e0118432 [PMID: 25738806]
  51. Comput Biol Med. 2017 Dec 1;91:366-371 [PMID: 29127902]
  52. BMC Med Inform Decis Mak. 2019 Dec 21;19(1):281 [PMID: 31864346]
  53. PLoS One. 2018 May 1;13(5):e0196259 [PMID: 29715323]
  54. Glob Health Res Policy. 2019 Oct 30;4:32 [PMID: 31687474]
  55. Entropy (Basel). 2021 Sep 27;23(10): [PMID: 34681982]
  56. PLoS One. 2022 Mar 3;17(3):e0264429 [PMID: 35239697]
  57. Int J Mycobacteriol. 2019 Apr-Jun;8(2):113-117 [PMID: 31210151]
  58. South Afr J HIV Med. 2020 Aug 11;21(1):1107 [PMID: 32934834]
  59. Mol Divers. 2021 Aug;25(3):1541-1551 [PMID: 34241771]
  60. Sci Rep. 2022 Jul 26;12(1):12715 [PMID: 35882962]

MeSH Term

Female
Humans
Male
HIV Infections
Ethiopia
CD4 Lymphocyte Count
Machine Learning
Hospitals
Anti-HIV Agents

Chemicals

Anti-HIV Agents

Word Cloud

Created with Highcharts 10.0.0virologicalfailurepatientsantiretroviraltherapylearningdataHIV-positiveMachinealgorithmspredictstudyusedfeatureforestARTpredictiveHIVclassificationfeaturessecondaryUniversityGondarComprehensiveSpecializedHospital2022usingruleassociationrandomclassifieroutperformedpredictingamongimportancepredictorstakingEthiopiaBACKGROUND:TreatmenteffectivereducesviralloadwellHIV-relatedmorbiditymortalityDespiteexpandedavailabilityaroundworldremainsseriousproblemThuspotentialimprovequalitycareneedsanalyzinghugeamountsenhancingpredictioncapabilitiesdifferentmachinecauseMETHOD:institution-basedconductJanuary2020MayPatients'extractedelectronicdatabasestructuredchecklistimportedPythonversionthreesoftwarepre-processinganalysissevensupervisedmachine-learningmodeldevelopmenttrainedperformancesmodelsevaluatedaccuracysensitivityspecificityprecisionf1-scoreAUCAssociationmininggeneratebestindependenttargetRESULT:5264participants18933506%males33716404%femalesincludedsensitivity = 100precision = 0987f1-score = 0993AUC = 09989selectedclassifiersRandomrulesidentifiedtopeightMaleyoungeragelongerdurationCPTTPTeducationalstatusTDF-3TC-EFVlowCD4countsbasedrankingCD-4countrecognizedimportantpredictorCONCLUSION:identifyingrelevantresultshelpfulhealthprofessionalsdeterminingoptimaloutcomeAmharaRegionAntiretroviraltreatmentHIV/AIDSVirological

Similar Articles

Cited By