Host-microbiome interaction in fish and shellfish: An overview.

A D Diwan, Sanjay N Harke, Archana N Panche
Author Information
  1. A D Diwan: Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India.
  2. Sanjay N Harke: Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India.
  3. Archana N Panche: Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark.

Abstract

The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.

Keywords

References

  1. PeerJ. 2020 Aug 14;8:e9646 [PMID: 32864208]
  2. Microbiome. 2020 Nov 23;8(1):168 [PMID: 33228779]
  3. Microbiome. 2022 Jan 26;10(1):18 [PMID: 35081990]
  4. Mucosal Immunol. 2010 Jul;3(4):355-60 [PMID: 20237466]
  5. Microbiome. 2018 Apr 2;6(1):64 [PMID: 29609655]
  6. mBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  7. Fish Shellfish Immunol. 2019 Apr;87:853-870 [PMID: 30794933]
  8. Nat Commun. 2018 Nov 22;9(1):4921 [PMID: 30467310]
  9. Microbiome. 2021 May 17;9(1):109 [PMID: 34001275]
  10. Fish Shellfish Immunol. 2008 Jul;25(1-2):128-36 [PMID: 18450477]
  11. Mol Immunol. 2007 Jan;44(4):638-47 [PMID: 16540171]
  12. Nat Clin Pract Gastroenterol Hepatol. 2005 Sep;2(9):416-22 [PMID: 16265432]
  13. Fish Shellfish Immunol. 2019 Oct;93:1067-1075 [PMID: 31386909]
  14. Front Microbiol. 2021 Mar 11;12:567408 [PMID: 33776947]
  15. Int J Med Microbiol. 2010 Jan;300(1):63-73 [PMID: 19828372]
  16. Microbiome. 2018 Apr 25;6(1):78 [PMID: 29695294]
  17. Fish Physiol Biochem. 2014 Feb;40(1):295-309 [PMID: 23933744]
  18. Cell Res. 2020 Jun;30(6):492-506 [PMID: 32433595]
  19. ScientificWorldJournal. 2006 Aug 11;6:931-45 [PMID: 16906326]
  20. Ecol Lett. 2016 Jul;19(7):810-22 [PMID: 27282316]
  21. Dig Dis Sci. 2020 Mar;65(3):695-705 [PMID: 32067143]
  22. J Invertebr Pathol. 2021 Nov;186:107387 [PMID: 32330478]
  23. Dis Aquat Organ. 2006 Oct 27;72(3):241-52 [PMID: 17190202]
  24. Fish Shellfish Immunol. 2015 Aug;45(2):608-18 [PMID: 26003737]
  25. Dev Comp Immunol. 2011 Dec;35(12):1346-65 [PMID: 22133710]
  26. Nat Rev Microbiol. 2010 Mar;8(3):218-30 [PMID: 20157340]
  27. FEMS Microbiol Ecol. 2013 Dec;86(3):432-43 [PMID: 23802730]
  28. Microb Ecol. 1990 Jan;19(1):21-41 [PMID: 24196252]
  29. Microbiologyopen. 2020 Feb;9(2):e967 [PMID: 31736262]
  30. Fish Shellfish Immunol. 2020 Mar;98:477-487 [PMID: 31945485]
  31. Lett Appl Microbiol. 2008 Jan;46(1):43-8 [PMID: 17944860]
  32. Environ Res. 2022 Nov;214(Pt 4):114202 [PMID: 36030922]
  33. Sci Rep. 2015 Dec 11;5:18206 [PMID: 26658351]
  34. Environ Pollut. 2018 Apr;235:245-254 [PMID: 29291524]
  35. Microbiome. 2020 Mar 10;8(1):32 [PMID: 32156316]
  36. FEMS Microbiol Ecol. 2018 Oct 1;94(10): [PMID: 30124839]
  37. Fish Shellfish Immunol. 2018 Jul;78:279-288 [PMID: 29709590]
  38. Appl Environ Microbiol. 2019 Apr 4;85(8): [PMID: 30737344]
  39. Environ Microbiol. 2016 Dec;18(12):4739-4754 [PMID: 27130138]
  40. BMC Microbiol. 2016 Jul 19;16(1):157 [PMID: 27435866]
  41. Fish Shellfish Immunol. 2019 Jan;84:1050-1058 [PMID: 30419396]
  42. J Anim Physiol Anim Nutr (Berl). 2022 Mar;106(2):441-469 [PMID: 34355428]
  43. ISME J. 2016 Aug;10(8):2076 [PMID: 27458892]
  44. PeerJ. 2021 Feb 25;9:e10911 [PMID: 33665032]
  45. Sci Rep. 2021 May 11;11(1):9936 [PMID: 33976316]
  46. Fish Shellfish Immunol. 2018 Sep;80:191-199 [PMID: 29803665]
  47. Nat Immunol. 2010 Sep;11(9):827-35 [PMID: 20676094]
  48. Appl Microbiol Biotechnol. 2018 Apr;102(8):3755-3764 [PMID: 29516148]
  49. J Clin Gastroenterol. 2011 Nov;45 Suppl:S115-9 [PMID: 21992949]
  50. Appl Environ Microbiol. 2002 Mar;68(3):1374-80 [PMID: 11872490]
  51. Vet Immunol Immunopathol. 2018 Nov;205:35-48 [PMID: 30459000]
  52. J Invertebr Pathol. 2016 Jan;133:12-9 [PMID: 26585302]
  53. Fish Shellfish Immunol. 2019 May;88:142-149 [PMID: 30807860]
  54. PLoS Biol. 2013;11(8):e1001631 [PMID: 23976878]
  55. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4596-601 [PMID: 15070763]
  56. Imeta. 2022 Apr 05;1(2):e17 [PMID: 38868566]
  57. Fish Shellfish Immunol. 2015 Aug;45(2):933-9 [PMID: 26052010]
  58. Sci Total Environ. 2021 Jul 1;776:145955 [PMID: 33647645]
  59. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  60. Sci Rep. 2020 Apr 3;10(1):5916 [PMID: 32246011]
  61. Nat Rev Microbiol. 2007 May;5(5):355-62 [PMID: 17384666]
  62. Fish Shellfish Immunol. 2019 Mar;86:497-506 [PMID: 30513381]
  63. Sci Rep. 2020 Mar 17;10(1):4896 [PMID: 32184459]
  64. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  65. Sci Total Environ. 2022 Feb 20;808:152093 [PMID: 34863741]
  66. Appl Microbiol Biotechnol. 2018 Sep;102(17):7343-7350 [PMID: 29982924]
  67. Fish Shellfish Immunol. 2012 Oct;33(4):1027-32 [PMID: 22584202]
  68. Microbiome. 2019 Jan 11;7(1):5 [PMID: 30635058]
  69. Vet Res Forum. 2015 Fall;6(4):331-5 [PMID: 26973770]
  70. FEMS Immunol Med Microbiol. 2008 Mar;52(2):145-54 [PMID: 18081845]
  71. Ecotoxicol Environ Saf. 2020 Mar 15;191:110182 [PMID: 31958628]
  72. Front Microbiol. 2018 Oct 11;9:2430 [PMID: 30364349]
  73. Environ Microbiol Rep. 2015 Oct;7(5):803-9 [PMID: 26259681]
  74. Fish Shellfish Immunol. 2015 Aug;45(2):733-41 [PMID: 26044743]
  75. Microorganisms. 2022 Apr 24;10(5): [PMID: 35630336]
  76. Front Microbiol. 2018 Jan 15;8:2664 [PMID: 29379473]
  77. J Mol Microbiol Biotechnol. 2008;14(1-3):107-14 [PMID: 17957117]
  78. Environ Int. 2018 Oct;119:327-333 [PMID: 29990953]
  79. Microb Pathog. 2020 Aug;145:104251 [PMID: 32418919]
  80. Microbiome. 2018 Feb 20;6(1):39 [PMID: 29463295]
  81. Sci Rep. 2017 Sep 18;7(1):11783 [PMID: 28924190]
  82. Microb Ecol. 2023 May;85(4):1190-1201 [PMID: 35366074]
  83. PLoS One. 2013;8(4):e60802 [PMID: 23577162]
  84. Microorganisms. 2019 Mar 30;7(4): [PMID: 30935061]
  85. Fish Shellfish Immunol. 2012 Jan;32(1):170-7 [PMID: 22126856]
  86. Front Microbiol. 2017 Jul 18;8:1362 [PMID: 28769916]
  87. Fish Shellfish Immunol. 2014 Dec;41(2):332-9 [PMID: 25218685]
  88. Fish Shellfish Immunol. 2006 Nov;21(5):513-24 [PMID: 16631379]
  89. Front Microbiol. 2018 Oct 12;9:2429 [PMID: 30369918]
  90. Front Microbiol. 2018 May 04;9:873 [PMID: 29780377]
  91. J Food Prot. 1995 Dec;58(12):1363-1368 [PMID: 31159042]
  92. Microbiome. 2021 Apr 12;9(1):88 [PMID: 33845910]
  93. Front Cell Infect Microbiol. 2020 Oct 14;10:569070 [PMID: 33163417]
  94. Ann N Y Acad Sci. 2009 Apr;1163:340-2 [PMID: 19456355]
  95. Fish Shellfish Immunol. 2014 Jan;36(1):90-7 [PMID: 24161774]
  96. Fish Shellfish Immunol. 2003 Jul;15(1):71-90 [PMID: 12833917]
  97. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7622-7 [PMID: 17456593]
  98. PeerJ. 2018 Oct 30;6:e5826 [PMID: 30397546]
  99. Microb Ecol. 2021 Feb;81(2):460-470 [PMID: 32840670]
  100. Comp Immunol Microbiol Infect Dis. 2008 Jul;31(4):337-45 [PMID: 17532470]
  101. Dev Biol. 2006 Sep 15;297(2):374-86 [PMID: 16781702]
  102. Sci Total Environ. 2019 Mar 20;657:1194-1204 [PMID: 30677886]
  103. Fish Shellfish Immunol. 2019 May;88:335-343 [PMID: 30772398]
  104. J Fish Dis. 2011 Jul;34(7):499-507 [PMID: 21535012]
  105. J Innate Immun. 2019;11(5):393-404 [PMID: 30566939]
  106. NPJ Biofilms Microbiomes. 2021 Jan 19;7(1):5 [PMID: 33469034]
  107. FEMS Immunol Med Microbiol. 2007 Oct;51(1):185-93 [PMID: 17645738]
  108. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  109. Microbiome. 2021 Jul 31;9(1):166 [PMID: 34332628]
  110. Appl Microbiol Biotechnol. 2019 Apr;103(7):3111-3122 [PMID: 30815709]
  111. Dev Comp Immunol. 2016 Nov;64:103-17 [PMID: 26995769]
  112. Nat Commun. 2017 Nov 20;8(1):1608 [PMID: 29151571]
  113. Crit Rev Microbiol. 2009;35(1):43-66 [PMID: 19514908]
  114. Microbiol Spectr. 2022 Apr 27;10(2):e0246521 [PMID: 35412375]
  115. Fish Shellfish Immunol. 2019 Mar;86:160-168 [PMID: 30391532]
  116. Syst Appl Microbiol. 2000 Dec;23(4):523-7 [PMID: 11249022]
  117. Front Microbiol. 2021 Nov 29;12:741164 [PMID: 34912305]
  118. Ecotoxicol Environ Saf. 2019 Dec 30;186:109771 [PMID: 31629904]
  119. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  120. Genomics. 2021 Mar;113(2):815-826 [PMID: 33508444]
  121. Fish Shellfish Immunol. 2011 Aug;31(2):196-201 [PMID: 21620974]
  122. Trends Microbiol. 2000 May;8(5):226-31 [PMID: 10785639]
  123. Fish Shellfish Immunol. 2020 Nov;106:733-741 [PMID: 32858186]
  124. J Appl Microbiol. 2018 Sep;125(3):792-799 [PMID: 29777622]
  125. PLoS Biol. 2018 Dec 10;16(12):e2006893 [PMID: 30532251]
  126. Microbiome. 2018 May 9;6(1):83 [PMID: 29739445]
  127. Microbiome. 2018 Mar 9;6(1):46 [PMID: 29523192]
  128. Appl Microbiol Biotechnol. 2018 Oct;102(19):8585-8598 [PMID: 30039332]
  129. Nat Immunol. 2007 Nov;8(11):1173-8 [PMID: 17952042]
  130. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]
  131. Fish Shellfish Immunol. 2017 Apr;63:201-207 [PMID: 28214600]

Word Cloud

Created with Highcharts 10.0.0gutmicrobiomefishshellfishhostmicrobialinteractionroleactivitiesdevelopmentnutrientuptakeimmunesystemspeciescommunityparticularlymanagementvariousphysiologicalincludinggrowthconsideredaquacultureassociatedfunctionshost'sinvolveddiseasescompoundshomeostasismetabolichealthavailablesourcenaturalnewreportedinformationhost-microbiomegeneexpressionpresentimportancehealthyperformancenowwidelystudieddetailpotentialapplicationsfarmingfutureindustryanimalsnumberbeneficialstimulatingoptimalgastrointestinalproducingsupplyingvitaminsimprovingprovidingadditionalenzymaticBesidesstrengtheningmaintainingmucosaltoleranceenhancingresilienceinfectiousproductionanticarcinogenicanti-inflammatorysignificantoften"extraorgan"playskeyintestinalregulationRecentstudiessuggestenergyregulatingfeedingdigestiveprocesseswellresponseConsequentlydecipheringdynamicsculturedwillplayindispensablepromotinganimalproductivitymentionedtractintestineactsinnovativeproductdiscoverycommunitiesseveralmarineorganismsproductsdiversearraybiologicaltoday1000Explorationingredientscreateopportunitiesbio-pharma/aquacultureindustriesConsideringimportantwholelifespannecessaryunderstandprocessHoweverpertainingcellularlevelpathwaysimmunomodulationmechanismsliteraturescantythreewaysinvolvinghost-microbe-environmentoperatesmaintainieintrinsicfactorsenvironmentshapescompositioncoreequalinfluencebiologyrevieweffortsmadecollectcomprehensiveaspectsmaintenancedigestionabsorptionmetabolismHost-microbiomeshellfish:overviewFishHostInteractionMechanismMicrobiomeShellfish

Similar Articles

Cited By