Genome size variation within : Clues on the colonization of insular environments.

Guilherme Roxo, Miguel Brilhante, Mónica Moura, Miguel Menezes de Sequeira, Luís Silva, José Carlos Costa, Raquel Vasconcelos, Pedro Talhinhas, Maria M Romeiras
Author Information
  1. Guilherme Roxo: Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA) Universidade de Lisboa, Tapada da Ajuda Lisbon Portugal. ORCID
  2. Miguel Brilhante: Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA) Universidade de Lisboa, Tapada da Ajuda Lisbon Portugal. ORCID
  3. Mónica Moura: CIBIO-Azores, Departamento de Biologia Universidade dos Açores Ponta Delgada Portugal. ORCID
  4. Miguel Menezes de Sequeira: Madeira Botanical Group, Faculty of Life Sciences University of Madeira Funchal Portugal. ORCID
  5. Luís Silva: CIBIO-Azores, Departamento de Biologia Universidade dos Açores Ponta Delgada Portugal. ORCID
  6. José Carlos Costa: Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA) Universidade de Lisboa, Tapada da Ajuda Lisbon Portugal. ORCID
  7. Raquel Vasconcelos: BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de Vairão Vairão Portugal. ORCID
  8. Pedro Talhinhas: Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA) Universidade de Lisboa, Tapada da Ajuda Lisbon Portugal. ORCID
  9. Maria M Romeiras: Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA) Universidade de Lisboa, Tapada da Ajuda Lisbon Portugal. ORCID

Abstract

Angiosperms present an astonishing diversity of genome sizes that can vary intra- or interspecifically. The remarkable new cytogenomic data shed some light on our understanding of evolution, but few studies were performed with insular and mainland populations to test possible correlations with dispersal, speciation, and adaptations to insular environments. Here, patterns of cytogenomic diversity were assessed among geographic samples (ca. 114) of (Apiaceae), collected across the Azores and Madeira archipelagos, as well as in adjacent continental areas of Portugal. Using flow cytometry, the results indicated a significant intraspecific genome size variation, spanning from reduced sizes in the insular populations to larger ones in the mainland populations. Moreover, there was a tendency for an increase in genome size along the mainland populations, associated with lower temperatures, higher precipitation, and lower precipitation seasonality. However, this gradient might be the result of historic phylogeographical events associated with previous dispersal and extinction of local populations. Overall, our findings provided evidence that smaller genome sizes might play a critical role in the colonization of islands, corroborating other studies that argue that organisms with smaller genomes use fewer resources, having a selective advantage under insular environments. Although further studies are needed to improve our understanding of the mechanisms underlying genome size evolution on islands, conservation strategies must be promoted to protect the rich cytogenomic diversity found among populations, which occur in coastal areas that are particularly threatened by human activity, pollution, invasive species, and climate changes.

Keywords

References

  1. Heredity (Edinb). 2008 Oct;101(4):297-8 [PMID: 18665185]
  2. New Phytol. 2013 Jul;199(1):264-276 [PMID: 23550586]
  3. Genome Res. 2007 May;17(5):594-601 [PMID: 17420184]
  4. Mar Pollut Bull. 2018 Jan;126:101-112 [PMID: 29421076]
  5. Am J Bot. 2015 Nov;102(11):1753-6 [PMID: 26451037]
  6. J Exp Bot. 2013 Jan;64(2):495-505 [PMID: 23264516]
  7. Science. 2008 Apr 25;320(5875):481-3 [PMID: 18436776]
  8. Plants (Basel). 2018 Oct 27;7(4): [PMID: 30373262]
  9. Evolution. 2010 Jul;64(7):2097-109 [PMID: 20148953]
  10. Ann Bot. 2006 Sep;98(3):515-27 [PMID: 16820406]
  11. PLoS Genet. 2018 May 10;14(5):e1007162 [PMID: 29746459]
  12. Curr Opin Plant Biol. 2012 Apr;15(2):131-9 [PMID: 22341793]
  13. Korean J Anesthesiol. 2017 Apr;70(2):144-156 [PMID: 28367284]
  14. Ann Bot. 2004 Dec;94(6):897-911 [PMID: 15520022]
  15. Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101 [PMID: 11325054]
  16. Science. 1983 Jun 3;220(4601):1049-51 [PMID: 17754551]
  17. Chemosphere. 2021 Jun;273:128601 [PMID: 33070976]
  18. Nahrung. 2001 Oct;45(5):353-6 [PMID: 11715349]
  19. Ann Bot. 2005 Jan;95(1):177-90 [PMID: 15596465]
  20. Sci Data. 2017 Sep 05;4:170122 [PMID: 28872642]
  21. Plants (Basel). 2021 Sep 18;10(9): [PMID: 34579486]
  22. Ann Bot. 2003 Jul;92(1):153-64 [PMID: 12824074]
  23. Ann Bot. 2007 Mar;99(3):495-505 [PMID: 17204534]
  24. New Phytol. 2005 Oct;168(1):71-80 [PMID: 16159322]
  25. Ann Bot. 2005 Jan;95(1):119-25 [PMID: 15596461]
  26. New Phytol. 2007;173(2):422-37 [PMID: 17204088]
  27. Cytogenet Genome Res. 2005;110(1-4):91-107 [PMID: 16093661]
  28. Genes (Basel). 2018 Feb 14;9(2): [PMID: 29443885]
  29. Ann Bot. 2009 Jul;104(1):161-78 [PMID: 19433417]
  30. Cytometry A. 2014 Aug;85(8):663-77 [PMID: 24889089]
  31. PLoS Biol. 2018 Jan 11;16(1):e2003706 [PMID: 29324757]
  32. Ann Bot. 2014 Dec;114(8):1651-63 [PMID: 25274549]
  33. Genome Biol Evol. 2015 Aug 04;7(8):2344-51 [PMID: 26242601]
  34. New Phytol. 2007;174(4):717-720 [PMID: 17504455]
  35. Heredity (Edinb). 2020 Feb;124(2):336-350 [PMID: 31541203]
  36. New Phytol. 2008;179(4):975-986 [PMID: 18564303]
  37. New Phytol. 2016 Sep;211(4):1209-20 [PMID: 27214387]
  38. Mol Phylogenet Evol. 2018 Feb;119:196-209 [PMID: 29162552]
  39. Mol Biol Rep. 2018 Jun;45(3):203-209 [PMID: 29404829]
  40. Ann Bot. 2010 Jan;105(1):109-16 [PMID: 19887472]
  41. Ecol Evol. 2023 Apr 19;13(4):e10009 [PMID: 37091572]
  42. Genet Res. 2001 Jun;77(3):261-75 [PMID: 11486509]
  43. Ann Bot. 2007 Oct;100(4):875-88 [PMID: 17684025]
  44. Ann Bot. 2005 Jan;95(1):133-46 [PMID: 15596463]
  45. Proc Biol Sci. 2020 Aug 26;287(1933):20201441 [PMID: 32842932]
  46. Biol Direct. 2016 Sep 06;11:44 [PMID: 27600528]
  47. Proc R Soc Lond B Biol Sci. 1972 Jun 6;181(1063):109-35 [PMID: 4403285]
  48. Plant Physiol Biochem. 2009 Jan;47(1):37-41 [PMID: 18980846]
  49. Front Plant Sci. 2020 Nov 12;11:577536 [PMID: 33281844]
  50. Genome. 2010 Dec;53(12):1066-82 [PMID: 21164539]
  51. New Phytol. 2013 Nov;200(3):911-921 [PMID: 23819630]
  52. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9 [PMID: 19667210]
  53. Heredity (Edinb). 2016 Feb;116(2):200-12 [PMID: 26486611]
  54. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7096-101 [PMID: 21402904]
  55. New Phytol. 2016 Jun;210(4):1195-206 [PMID: 26875784]
  56. Plant Sci. 2013 Jun;207:72-8 [PMID: 23602101]

Word Cloud

Created with Highcharts 10.0.0populationsgenomeinsularstudiessizediversitysizescytogenomicmainlandenvironmentsvariationunderstandingevolutiondispersalamongareasflowcytometryintraspecificassociatedlowerprecipitationmightsmallercolonizationislandsAngiospermspresentastonishingcanvaryintra-interspecificallyremarkablenewdatashedlightperformedtestpossiblecorrelationsspeciationadaptationspatternsassessedgeographicsamplesca114ApiaceaecollectedacrossAzoresMadeiraarchipelagoswelladjacentcontinentalPortugalUsingresultsindicatedsignificantspanningreducedlargeronesMoreovertendencyincreasealongtemperatureshigherseasonalityHowevergradientresulthistoricphylogeographicaleventspreviousextinctionlocalOverallfindingsprovidedevidenceplaycriticalrolecorroboratingargueorganismsgenomesusefewerresourcesselectiveadvantageAlthoughneededimprovemechanismsunderlyingconservationstrategiesmustpromotedprotectrichfoundoccurcoastalparticularlythreatenedhumanactivitypollutioninvasivespeciesclimatechangesGenomewithin:CluesDNAMacaronesianIslandsgenome‐climateinteractionspopulation

Similar Articles

Cited By