[The circular life of viruses].

Alexis Serge Chasseur, Benoît Muylkens, Damien Coupeau
Author Information
  1. Alexis Serge Chasseur: Virologie moléculaire, Namur Research Institute for Life Sciences (Narilis), Unité de recherche vétérinaire intégrée, université de Namur (UNamur), Namur, Belgique. ORCID
  2. Benoît Muylkens: Virologie moléculaire, Namur Research Institute for Life Sciences (Narilis), Unité de recherche vétérinaire intégrée, université de Namur (UNamur), Namur, Belgique.
  3. Damien Coupeau: Virologie moléculaire, Namur Research Institute for Life Sciences (Narilis), Unité de recherche vétérinaire intégrée, université de Namur (UNamur), Namur, Belgique. ORCID

Abstract

Circular RNAs (circRNA), as ancient as the first viruses, take an important part in the host-pathogen relationship. After the first description of dysregulated cellular circRNAs upon viral infection, numerous circRNAs of viral origin were identified and characterized. They are impacting both viral and cellular cycles and are associated with virus-induced oncogenesis, immune system regulation and cell differentiation. While the naïve reader might get swamped by discovering this new field of RNA biology, it seems that these RNA rings are actually full of surprises and wonders at both a functional and a biogenesis level.

References

  1. Moelling K, Broecker F. Viroids and the Origin of Life. IJMS 2021; 22 : 3476.
  2. Diener TO. Potato spindle tuber “virus”. Virology 1971 ; 45 : 411–428.
  3. Singh R, Finnie R, Bagnall R. Losses due to the potato spindle tuber virus. American Potato Journal 1971 ; 48 : 262–267.
  4. Sastry KS. Plant virus and viroid diseases in the tropics. Dordrecht New York: Springer, 2013 : 361 p.
  5. Berget SM, Moore C, Sharp PA. Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 1977 ; 74 : 3171–3175.
  6. Black DL. Mechanisms of Alternative Pre-Messenger RNA Splicing. Annu Rev Biochem 2003 ; 72 : 291–336.
  7. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019 ; 20 : 675–691.
  8. Ladet J, Mortreux F. Les ARN circulaires, acteurs et biomarqueurs dans le cancer. Med Sci (Paris) 2020; 36 : 935–8.
  9. Hansen EB, Fredsøe J, Okholm TLH, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med 2022; 14 : 8.
  10. Lacazette E, Diallo LH, Tatin F, et al. L’ARN circulaire nous joue-t-il des tours ? Med Sci (Paris) 2020; 36 : 38–43.
  11. Pfeffer S, Zavolan M, Grässer FA, et al. Identification of Virus-Encoded MicroRNAs. Science 2004 ; 304 : 734–736.
  12. Ungerleider N, Concha M, Lin Z, et al. The Epstein Barr virus circRNAome. PLoS Pathog 2018 ; 14 : e1007206.
  13. Chasseur AS, Trozzi G, Istasse C, et al. Marek’s Disease Virus Virulence Genes Encode Circular RNAs. J Virol 2022; 96 : e00321–2.
  14. Ungerleider NA, Jain V, Wang Y, et al. Comparative Analysis of Gammaherpesvirus Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. J Virol 2019 ; 93 : e01952–e01918.
  15. Toptan T, Abere B, Nalesnik MA, et al. Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci USA 2018 ; 115 : E8737–E8745.
  16. Spaete R. Frenkel. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 1982 ; 30 : 295–304.
  17. Sandri-Goldin R M. The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 2008 ; 5241 :
  18. Gong L, Chen J, Dong M, et al. Epstein-Barr virus-derived circular RNA LMP 2A induces stemness in EBV-associated gastric cancer. EMBO Rep 2020; 21 : e49689.
  19. Ge J, Wang J, Xiong F, et al. Epstein-Barr Virus-Encoded Circular RNA CircBART2.2 Promotes Immune Escape of Nasopharyngeal Carcinoma by Regulating PD-L1. Cancer Res 2021; 81 : 5074–88.
  20. Sekiba K, Otsuka M, Ohno M, et al. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018 ; 9 : 20953–20964.
  21. Zhu M, Liang Z, Pan J, et al. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1. Mol Ther Nucleic Acids 2021; 25 : 668–82.
  22. Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019 ; 10 : 2300.
  23. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Sig Transduct Target Ther 2021; 6 : 74.
  24. Yao W, Pan J, Liu Z, et al. The Cellular and Viral circRNAome Induced by Respiratory Syncytial Virus Infection. mBio 2021; 12 : e03075–21.
  25. Cai Z, Lu C, He J, et al. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2021; 22 : 1297–308.
  26. Pan J, Zhang X, Zhang Y, et al. Grass carp reovirus encoding circular RNAs with antiviral activity. Aquaculture 2021; 533 : 736135.
  27. Zhang Y, Zhang X, Dai K, et al. Bombyx mori Akirin hijacks a viral peptide vSP27 encoded by BmCPV circRNA and activates the ROS-NF-κB pathway against viral infection. Int J Biol Macromol 2022; 194 : 223–32.
  28. Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 2017 ; 3 : 17053.
  29. Lwoff A, Anderson T, Jacob F. Remarques sur les caractéristiques de la particule virale infectieuse. Annales de l’Institut Pasteur 1959 ; 97 : 281–289.
  30. Chamseddin BH, Lee EE, Kim J, et al. Assessment of circularized E7 RNA, GLUT1, and PD-L1 in anal squamous cell carcinoma. Oncotarget 2019 ; 10 : 5958–5969.
  31. Yu L, Zheng Z-M. Human Papillomavirus Type 16 Circular RNA Is Barely Detectable for the Claimed Biological Activity. mBio 2022; 13 : e03594–21.
  32. Yu L, Lobanov A, Zheng Z-M. Reply to Wang, et al. Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA. mBio 2022; 13 : e00758–22.
  33. Wang RC, Lee EE, Zhao J, et al. Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA. mBio 2022; 13 : e00411–22.
  34. Yang S, Liu X, Wang M, et al. Circular RNAs Represent a Novel Class of Human Cytomegalovirus Transcripts. Microbiol Spectr 2022; 10 : e01106–22.
  35. Tagawa T, Gao S, Koparde VN, et al. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci USA 2018 ; 115 : 12805–12810.
  36. Zhu M, Dai Y, Tong X, et al. Circ-Udg Derived from Cyprinid Herpesvirus 2 Promotes Viral Replication. Microbiol Spectr 2022; 10 : e00943–22.
  37. Abere B, Zhou H, Li J, et al. Merkel Cell Polyomavirus Encodes Circular RNAs (circRNAs) Enabling a Dynamic circRNA/microRNA/mRNA Regulatory Network. mBio 2020; 11 : e03059–20.
  38. Liu X-N, Guo XR, Han Y, et al. The Cellular and Viral circRNAs Induced by Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2022; 13 : 925953.

Grants

  1. 40009229/FRIA/FNRS

MeSH Term

Humans
RNA, Circular
RNA
Virus Diseases
Genes, Viral
Viruses

Chemicals

RNA, Circular
RNA

Word Cloud

Created with Highcharts 10.0.0viralfirstcellularcircRNAsRNACircularRNAscircRNAancientvirusestakeimportantparthost-pathogenrelationshipdescriptiondysregulateduponinfectionnumerousoriginidentifiedcharacterizedimpactingcyclesassociatedvirus-inducedoncogenesisimmunesystemregulationcelldifferentiationnaïvereadermightgetswampeddiscoveringnewfieldbiologyseemsringsactuallyfullsurpriseswondersfunctionalbiogenesislevel[Thecircularlifeviruses]

Similar Articles

Cited By