Metabolomic differentiation of benign vs malignant pulmonary nodules with high specificity via high-resolution mass spectrometry analysis of patient sera.

Yao Yao, Xueping Wang, Jian Guan, Chuanbo Xie, Hui Zhang, Jing Yang, Yao Luo, Lili Chen, Mingyue Zhao, Bitao Huo, Tiantian Yu, Wenhua Lu, Qiao Liu, Hongli Du, Yuying Liu, Peng Huang, Tiangang Luan, Wanli Liu, Yumin Hu
Author Information
  1. Yao Yao: Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. ORCID
  2. Xueping Wang: Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  3. Jian Guan: Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
  4. Chuanbo Xie: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  5. Hui Zhang: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  6. Jing Yang: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  7. Yao Luo: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  8. Lili Chen: Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
  9. Mingyue Zhao: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  10. Bitao Huo: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  11. Tiantian Yu: Metabolomics Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
  12. Wenhua Lu: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  13. Qiao Liu: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  14. Hongli Du: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
  15. Yuying Liu: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
  16. Peng Huang: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China. ORCID
  17. Tiangang Luan: Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. cesltg@mail.sysu.edu.cn. ORCID
  18. Wanli Liu: Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China. liuwl@sysucc.org.cn. ORCID
  19. Yumin Hu: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China. huym@sysucc.org.cn. ORCID

Abstract

Differential diagnosis of pulmonary nodules detected by computed tomography (CT) remains a challenge in clinical practice. Here, we characterize the global metabolomes of 480 serum samples including healthy controls, benign pulmonary nodules, and stage I lung adenocarcinoma. The adenocarcinoma demonstrates a distinct metabolomic signature, whereas benign nodules and healthy controls share major similarities in metabolomic profiles. A panel of 27 metabolites is identified in the discovery cohort (n = 306) to distinguish between benign and malignant nodules. The discriminant model achieves an AUC of 0.915 and 0.945 in the internal validation (n = 104) and external validation cohort (n = 111), respectively. Pathway analysis reveals elevation in glycolytic metabolites associated with decreased tryptophan in serum of lung adenocarcinoma vs benign nodules and healthy controls, and demonstrates that uptake of tryptophan promotes glycolysis in lung cancer cells. Our study highlights the value of the serum metabolite biomarkers in risk assessment of pulmonary nodules detected by CT screening.

References

  1. Curr Opin Pulm Med. 2021 Jul 1;27(4):240-248 [PMID: 33973553]
  2. Nature. 2014 Jul 31;511(7511):543-50 [PMID: 25079552]
  3. Pharmacol Rev. 2022 Jul;74(3):506-551 [PMID: 35710135]
  4. Cancer Res. 2016 Nov 1;76(21):6193-6204 [PMID: 27651314]
  5. J Immunol. 2006 Jun 1;176(11):6752-61 [PMID: 16709834]
  6. Nat Rev Drug Discov. 2019 May;18(5):379-401 [PMID: 30760888]
  7. Lancet Oncol. 2014 Nov;15(12):1332-41 [PMID: 25282285]
  8. Clin Cancer Res. 2014 Jan 1;20(1):6-8 [PMID: 24166909]
  9. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  10. J Biol Chem. 2018 Feb 23;293(8):2877-2887 [PMID: 29326164]
  11. Eur Respir J. 2014 Jul;44(1):217-38 [PMID: 24525442]
  12. Cell Metab. 2016 Jan 12;23(1):27-47 [PMID: 26771115]
  13. J Med Screen. 2011;18(3):109-11 [PMID: 22045816]
  14. Clin Cancer Res. 2015 May 15;21(10):2236-43 [PMID: 25979930]
  15. J Lipid Res. 2008 May;49(5):1137-46 [PMID: 18281723]
  16. Transpl Immunol. 2006 Dec;17(1):58-60 [PMID: 17157218]
  17. Acta Biochim Pol. 2017;64(3):513-518 [PMID: 28803255]
  18. PLoS One. 2011 Feb 16;6(2):e16957 [PMID: 21359215]
  19. Thorax. 2012 Apr;67(4):296-301 [PMID: 22286927]
  20. J Thorac Oncol. 2013 Jul;8(7):866-75 [PMID: 23612465]
  21. PLoS One. 2020 May 6;15(5):e0232272 [PMID: 32374740]
  22. Intern Med J. 2019 Mar;49(3):306-315 [PMID: 30897667]
  23. Clin Transl Oncol. 2021 Feb;23(2):418-423 [PMID: 32533317]
  24. Ann Thorac Med. 2019 Oct-Dec;14(4):226-238 [PMID: 31620206]
  25. N Engl J Med. 2013 Sep 5;369(10):910-9 [PMID: 24004118]
  26. Int J Pharm. 2013 Feb 25;443(1-2):245-53 [PMID: 23270998]
  27. Radiology. 2012 May;263(2):578-83 [PMID: 22454506]
  28. J Amino Acids. 2016;2016:8952520 [PMID: 26881063]
  29. Nat Commun. 2021 Nov 10;12(1):6479 [PMID: 34759281]
  30. Eur Respir Rev. 2017 Dec 20;26(146): [PMID: 29263171]
  31. Clin Cancer Res. 2017 Apr 15;23(8):1998-2005 [PMID: 27729459]
  32. N Engl J Med. 2020 Feb 6;382(6):503-513 [PMID: 31995683]
  33. Lancet. 2013 Aug 24;382(9893):720-31 [PMID: 23972815]
  34. Sci Transl Med. 2022 Feb 2;14(630):eabk2756 [PMID: 35108060]
  35. Cancer Prev Res (Phila). 2014 Dec;7(12):1173-8 [PMID: 25348855]
  36. Radiology. 2017 Jul;284(1):228-243 [PMID: 28240562]
  37. J Immunol. 2010 Sep 15;185(6):3190-8 [PMID: 20720200]
  38. Am J Cancer Res. 2015 Aug 15;5(9):2892-911 [PMID: 26609494]
  39. J Clin Lab Anal. 2011;25(4):246-50 [PMID: 21786327]
  40. Rapid Commun Mass Spectrom. 2016 Mar 15;30(5):581-93 [PMID: 26842580]
  41. Nat Commun. 2020 Jul 16;11(1):3556 [PMID: 32678093]
  42. Mol Metab. 2018 Aug;14:39-52 [PMID: 29397344]
  43. Anal Bioanal Chem. 2021 Oct;413(24):5927-5948 [PMID: 34142202]
  44. JAMA Intern Med. 2014 Jun;174(6):871-80 [PMID: 24710850]
  45. J Nucl Med. 2009 Mar;50(3):356-63 [PMID: 19223408]
  46. Radiology. 2008 Mar;246(3):697-722 [PMID: 18195376]
  47. Int J Cancer. 2020 May 1;146(9):2394-2405 [PMID: 31276202]
  48. Gigascience. 2013 Oct 16;2(1):13 [PMID: 24131531]
  49. Metabolites. 2015 Apr 09;5(2):192-210 [PMID: 25859693]
  50. Insights Imaging. 2018 Feb;9(1):73-86 [PMID: 29143191]
  51. Clin Cancer Res. 2018 May 1;24(9):2100-2109 [PMID: 29437793]
  52. Cancer Biomark. 2016 Mar 11;16(4):609-17 [PMID: 27002763]
  53. Cancer Cell. 2022 Nov 14;40(11):1279-1293 [PMID: 36270277]
  54. J Thorac Oncol. 2019 Mar;14(3):343-357 [PMID: 30529598]
  55. J Proteome Res. 2019 May 3;18(5):2175-2184 [PMID: 30892048]

MeSH Term

Humans
Serum
Adenocarcinoma of Lung
Lung Diseases
Diagnosis, Differential
Lung Neoplasms
Metabolomics
Biomarkers
Tomography, X-Ray Computed
Tryptophan
Glycolysis

Chemicals

Biomarkers
Tryptophan

Word Cloud

Created with Highcharts 10.0.0nodulesbenignpulmonaryserumhealthycontrolslungadenocarcinomadetectedCTdemonstratesmetabolomicmetabolitescohortmalignant0validationanalysistryptophanvsDifferentialdiagnosiscomputedtomographyremainschallengeclinicalpracticecharacterizeglobalmetabolomes480samplesincludingstagedistinctsignaturewhereassharemajorsimilaritiesprofilespanel27identifieddiscoveryn = 306distinguishdiscriminantmodelachievesAUC915945internaln = 104externaln = 111respectivelyPathwayrevealselevationglycolyticassociateddecreaseduptakepromotesglycolysiscancercellsstudyhighlightsvaluemetabolitebiomarkersriskassessmentscreeningMetabolomicdifferentiationhighspecificityviahigh-resolutionmassspectrometrypatientsera

Similar Articles

Cited By