Isolation, (bio)synthetic studies and evaluation of antimicrobial properties of drimenol-type sesquiterpenes of Termitomyces fungi.

Nina B Kreuzenbeck, Seema Dhiman, D��vid Roman, Immo Burkhardt, Benjamin H Conlon, Janis Fricke, Huijuan Guo, Janis Blume, Helmar G��rls, Michael Poulsen, Jeroen S Dickschat, Tobias G K��llner, Hans-Dieter Arndt, Christine Beemelmanns
Author Information
  1. Nina B Kreuzenbeck: Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Kn��ll-Institute (HKI), Beutenbergstra��e 11a, 07745, Jena, Germany.
  2. Seema Dhiman: Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743, Jena, Germany.
  3. D��vid Roman: Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Kn��ll-Institute (HKI), Beutenbergstra��e 11a, 07745, Jena, Germany. ORCID
  4. Immo Burkhardt: Kekul��-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Stra��e 1, 53121, Bonn, Germany.
  5. Benjamin H Conlon: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15 2100, Copenhagen, Denmark.
  6. Janis Fricke: Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Kn��ll-Institute (HKI), Beutenbergstra��e 11a, 07745, Jena, Germany.
  7. Huijuan Guo: Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Kn��ll-Institute (HKI), Beutenbergstra��e 11a, 07745, Jena, Germany. ORCID
  8. Janis Blume: Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743, Jena, Germany.
  9. Helmar G��rls: Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Humboldtstrasse 8, 07743, Jena, Germany.
  10. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15 2100, Copenhagen, Denmark. ORCID
  11. Jeroen S Dickschat: Kekul��-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Stra��e 1, 53121, Bonn, Germany. ORCID
  12. Tobias G K��llner: Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Kn��ll-Stra��e 8, 07745, Jena, Germany.
  13. Hans-Dieter Arndt: Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743, Jena, Germany.
  14. Christine Beemelmanns: Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Kn��ll-Institute (HKI), Beutenbergstra��e 11a, 07745, Jena, Germany. Christine.Beemelmanns@helmholtz-hips.de. ORCID

Abstract

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

References

  1. Appl Environ Microbiol. 2018 Feb 14;84(5): [PMID: 29269491]
  2. Insects. 2020 Aug 13;11(8): [PMID: 32823564]
  3. mSystems. 2022 Feb 22;7(1):e0121421 [PMID: 35014870]
  4. Angew Chem Int Ed Engl. 2021 Oct 25;60(44):23763-23770 [PMID: 34468074]
  5. Bioorg Chem. 2019 Oct;91:103166 [PMID: 31404796]
  6. Nat Prod Bioprospect. 2014 Dec 10;: [PMID: 25491089]
  7. Appl Environ Microbiol. 2015 Feb;81(3):1147-56 [PMID: 25452287]
  8. Acta Crystallogr C Struct Chem. 2015 Jan;71(Pt 1):3-8 [PMID: 25567568]
  9. Microb Cell. 2020 Mar 12;7(6):146-159 [PMID: 32548177]
  10. Angew Chem Int Ed Engl. 2023 Feb 20;62(9):e202215566 [PMID: 36583947]
  11. Nat Prod Rep. 2022 Feb 23;39(2):231-248 [PMID: 34879123]
  12. J Am Chem Soc. 2022 Dec 7;144(48):22067-22074 [PMID: 36416740]
  13. Org Biomol Chem. 2019 Mar 27;17(13):3348-3355 [PMID: 30693926]
  14. Appl Microbiol Biotechnol. 2015 Apr;99(8):3395-405 [PMID: 25773975]
  15. Chembiochem. 2012 Aug 13;13(12):1738-41 [PMID: 22782788]
  16. Nat Prod Rep. 2021 Apr 28;38(4):702-722 [PMID: 33404035]
  17. Nat Prod Rep. 2017 Mar 17;34(3):310-328 [PMID: 28205661]
  18. J Am Chem Soc. 2010 Oct 13;132(40):14303-14 [PMID: 20858010]
  19. Fungal Genet Biol. 2018 Mar;112:2-11 [PMID: 27593501]
  20. Plant J. 2017 Jun;90(6):1052-1063 [PMID: 28258968]
  21. Nat Prod Rep. 2020 Mar 25;37(3):425-463 [PMID: 31650156]
  22. Chembiochem. 2022 Sep 5;23(17):e202200173 [PMID: 35574818]
  23. Biol Lett. 2020 Aug;16(8):20200394 [PMID: 32781906]
  24. J Chem Ecol. 2017 Oct;43(10):986-995 [PMID: 29124530]
  25. J Org Chem. 2013 Oct 4;78(19):9571-8 [PMID: 24032688]
  26. Chem Pharm Bull (Tokyo). 2009 Apr;57(4):433-5 [PMID: 19336945]
  27. Phytochemistry. 2000 Aug;54(8):747-50 [PMID: 11014259]
  28. Nat Prod Rep. 2022 Feb 23;39(2):249-272 [PMID: 34612321]
  29. ISME J. 2023 May;17(5):733-747 [PMID: 36841903]
  30. Methods Enzymol. 1997;276:307-26 [PMID: 27754618]
  31. FEMS Microbiol Lett. 2008 Jul;284(2):231-6 [PMID: 18510561]
  32. Annu Rev Entomol. 2021 Jan 7;66:297-316 [PMID: 32926791]
  33. Nat Catal. 2018 Aug;1(8):609-615 [PMID: 30221250]
  34. Nat Prod Rep. 2014 Oct;31(10):1449-73 [PMID: 25171145]
  35. Appl Microbiol Biotechnol. 2016 Oct;100(20):8651-65 [PMID: 27638017]
  36. Tetrahedron Lett. 2021 Mar 30;68: [PMID: 35431352]
  37. Chem Rev. 2017 Sep 13;117(17):11570-11648 [PMID: 28841019]
  38. Chemistry. 2004 Apr 2;10(7):1778-88 [PMID: 15054765]
  39. Molecules. 2013 Apr 10;18(4):4192-208 [PMID: 23612472]
  40. Nat Prod Rep. 2004 Aug;21(4):449-77 [PMID: 15282630]
  41. Acc Chem Res. 2021 Oct 19;54(20):3780-3791 [PMID: 34254507]
  42. mBio. 2021 Jun 29;12(3):e0355120 [PMID: 34126770]
  43. J Chem Ecol. 1993 Oct;19(10):2337-45 [PMID: 24248580]
  44. J Chem Ecol. 2013 Jul;39(7):840-59 [PMID: 23793954]
  45. Chin J Nat Med. 2022 Oct;20(10):737-748 [PMID: 36307196]
  46. Sci Rep. 2016 Sep 15;6:32865 [PMID: 27628599]
  47. Commun Biol. 2021 Jun 3;4(1):673 [PMID: 34083721]
  48. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  49. J Appl Crystallogr. 2015 Jan 30;48(Pt 1):3-10 [PMID: 26089746]
  50. Org Lett. 2005 Jun 9;7(12):2301-4 [PMID: 15932183]

Grants

  1. 796194/EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme "People" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
  2. 771349/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  3. Project-ID 239748522/Deutsche Forschungsgemeinschaft (German Research Foundation)
  4. INST 275/442-1 FUGG/Deutsche Forschungsgemeinschaft (German Research Foundation)
  5. Project-ID 239748522/Deutsche Forschungsgemeinschaft (German Research Foundation)

Word Cloud

Created with Highcharts 10.0.0TermitomycessesquiterpenesfungifungalvolatileorganicVOCmushroomsdrimanerelatedantimicrobialinvolvedbiosynthesisMacrotermitinaetermitesfarmedgenusfoodsourcemillionsyearsHoweverbiochemicalmechanismsorchestratingmutualisticrelationshiplargelyunknowndeducesignalsecologicalpatternsrelatestabilitysymbiosisexploredcompoundrepertoireMacrotermesnatalensiscoloniesResultsshowemitpatterndiffersmyceliumgrowngardenslaboratoryculturesabundancesesquiterpenoidsallowedtargetedisolationfiveplatecultivationstotalsynthesisonedrimenoldrimanesassistedstructuralcomparativeanalysiscompoundsVOCsactivitytestingEnzymecandidatesputativelyterpeneheterologouslyexpressedcompleteskeletoncatalyzedformationtwostructurallymonocyclicnamednectrianolinsIsolationbiosyntheticstudiesevaluationpropertiesdrimenol-type

Similar Articles

Cited By (10)