Quantum spin models for numerosity perception.

Jorge Yago Malo, Guido Marco Cicchini, Maria Concetta Morrone, Maria Luisa Chiofalo
Author Information
  1. Jorge Yago Malo: Department of Physics "Enrico Fermi" and INFN, University of Pisa, Pisa, Italy. ORCID
  2. Guido Marco Cicchini: Institute of Neuroscience, CNR-Pisa and PisaVisionLab, Pisa, Italy.
  3. Maria Concetta Morrone: Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa and PisaVisionLab, Pisa, Italy.
  4. Maria Luisa Chiofalo: Department of Physics "Enrico Fermi" and INFN, University of Pisa, Pisa, Italy. ORCID

Abstract

Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to provide a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning; while simple accumulator models fail to predict Weber's Law, a common trait of human and animal numerosity processing. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.

References

  1. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;373(1740): [PMID: 29292348]
  2. J Exp Psychol Gen. 2012 Nov;141(4):642-8 [PMID: 22082115]
  3. J Neurophysiol. 2021 Jun 1;125(6):2107-2116 [PMID: 33881910]
  4. Nat Rev Neurosci. 2016 Jun;17(6):366-82 [PMID: 27150407]
  5. J Exp Anal Behav. 1999 Mar;71(2):215-51 [PMID: 10220931]
  6. Prog Biophys Mol Biol. 2017 Nov;130(Pt A):53-60 [PMID: 28487218]
  7. Entropy (Basel). 2021 Mar 18;23(3): [PMID: 33803765]
  8. Nat Neurosci. 2012 Jan 08;15(2):194-6 [PMID: 22231428]
  9. Phys Life Rev. 2014 Mar;11(1):39-78 [PMID: 24070914]
  10. Nat Neurosci. 2006 May;9(5):690-6 [PMID: 16617339]
  11. Trends Cogn Sci. 2003 Apr;7(4):145-147 [PMID: 12691758]
  12. Nat Hum Behav. 2020 Mar;4(3):294-307 [PMID: 31959921]
  13. Nature. 2011 Jun 15;474(7351):272-4 [PMID: 21677723]
  14. Curr Biol. 2008 Mar 25;18(6):425-8 [PMID: 18342507]
  15. Trends Cogn Sci. 2000 Feb;4(2):59-65 [PMID: 10652523]
  16. Nat Rev Neurosci. 2010 Feb;11(2):127-38 [PMID: 20068583]
  17. Trends Neurosci. 2004 Dec;27(12):712-9 [PMID: 15541511]
  18. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668): [PMID: 25823865]
  19. Front Mol Neurosci. 2017 Nov 07;10:366 [PMID: 29163041]
  20. J Vis. 2015;15(5):4 [PMID: 26067522]
  21. Sci Rep. 2020 Jun 22;10(1):10045 [PMID: 32572067]
  22. Trends Cogn Sci. 2015 Jul;19(7):383-93 [PMID: 26058709]
  23. Trends Cogn Sci. 2021 Jan;25(1):24-36 [PMID: 33221159]
  24. Dev Psychol. 2016 Aug;52(8):1206-16 [PMID: 27455185]
  25. Nature. 2006 Apr 20;440(7087):1007-12 [PMID: 16625187]
  26. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9431-6 [PMID: 24979797]
  27. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 [PMID: 6953413]
  28. Sci Adv. 2019 May 08;5(5):eaav7903 [PMID: 31086820]
  29. Biosystems. 2021 Mar;201:104328 [PMID: 33347968]
  30. Psychol Sci. 2014 Jan;25(1):265-70 [PMID: 24270462]
  31. Sci Adv. 2021 Jan 1;7(1): [PMID: 33523851]
  32. Dev Sci. 2020 Sep;23(5):e12940 [PMID: 31977137]
  33. Behav Brain Sci. 2017 Jan;40:e164 [PMID: 27530053]
  34. Nat Commun. 2016 Aug 24;7:12536 [PMID: 27555562]

MeSH Term

Animals
Infant, Newborn
Humans
Cognition
Neural Networks, Computer
Neurons
Perception
Visual Perception

Word Cloud

Created with Highcharts 10.0.0numbersimplenumerositymodelsWeber'ssystemssenseanimalneuralprocessingquantumspinmodelspectrumfrequencysystemlawHumansshareanimalsvertebratesinvertebratescapacityitemsenvironmentalreadybirthpervasivenessskillacrosskingdomsuggestsemergepopulationsneuronsCurrentmodellingliteraturehoweverstruggledprovidearchitecturecarryingtaskproposalssuggestingemergencemulti-layeredcomplexnetworkstypicallyrequiringsupervisedlearningaccumulatorfailpredictLawcommontraithumanpresentall-to-allconnectivityencodedstimulationtransientsignalsoccurringrandomorderlytemporalsequenceuseparadigmaticsimulationalapproachborrowedtheorymethodsopenequilibriumpossiblewaydescribeinformationmethodablecapturemanyperceptualcharacteristicscomponentsmagnetizationspectraharmonicssystem'stunnelingincreasestimulipresentedamplitudedecodingperformedideal-observerrevealsfollowscontrastswell-knownfailurereproducelinearaccumulatorsQuantumperception

Similar Articles

Cited By