Recent Advances in Assembly of Complex Plant Genomes.

Weilong Kong, Yibin Wang, Shengcheng Zhang, Jiaxin Yu, Xingtan Zhang
Author Information
  1. Weilong Kong: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  2. Yibin Wang: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  3. Shengcheng Zhang: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  4. Jiaxin Yu: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  5. Xingtan Zhang: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address: zhangxingtan@caas.cn.

Abstract

Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.

Keywords

References

  1. Nat Food. 2020 Dec;1(12):811-819 [PMID: 37128067]
  2. Mol Plant. 2022 Aug 1;15(8):1310-1328 [PMID: 35655434]
  3. Genome Res. 2020 Sep;30(9):1291-1305 [PMID: 32801147]
  4. Cell. 2021 Jul 22;184(15):3873-3883.e12 [PMID: 34171306]
  5. Nat Genet. 2021 Aug;53(8):1250-1259 [PMID: 34267370]
  6. Plant Biotechnol J. 2022 Oct;20(10):1996-2005 [PMID: 35767385]
  7. Nature. 2000 Dec 14;408(6814):796-815 [PMID: 11130711]
  8. Curr Opin Plant Biol. 2017 Apr;36:64-70 [PMID: 28231512]
  9. Genome Biol Evol. 2018 Oct 1;10(10):2596-2613 [PMID: 30239695]
  10. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19945-8 [PMID: 21041622]
  11. Nat Commun. 2018 Nov 19;9(1):4844 [PMID: 30451840]
  12. Genome Res. 2017 May;27(5):801-812 [PMID: 27940952]
  13. Plant J. 2022 Sep;111(5):1340-1353 [PMID: 35785503]
  14. Nat Genet. 2018 Nov;50(11):1565-1573 [PMID: 30297971]
  15. Nat Commun. 2021 Apr 28;12(1):1935 [PMID: 33911078]
  16. Gigascience. 2022 Mar 24;11: [PMID: 35333302]
  17. Nat Genet. 2018 Sep;50(9):1289-1295 [PMID: 30061735]
  18. Annu Rev Plant Biol. 2011;62:485-514 [PMID: 21526970]
  19. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  20. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13710-5 [PMID: 22869747]
  21. Cell Genom. 2022 May 11;2(5): [PMID: 35720975]
  22. Nat Biotechnol. 2023 Oct;41(10):1474-1482 [PMID: 36797493]
  23. Annu Rev Genomics Hum Genet. 2007;8:241-59 [PMID: 17506661]
  24. Front Genet. 2022 May 12;13:884081 [PMID: 35646071]
  25. Nat Methods. 2018 Jun;15(6):461-468 [PMID: 29713083]
  26. Mol Plant. 2021 Oct 4;14(10):1757-1767 [PMID: 34171480]
  27. Comput Struct Biotechnol J. 2019 Dec 09;18:66-72 [PMID: 31908732]
  28. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  29. Nat Genet. 2022 Jan;54(1):73-83 [PMID: 34980919]
  30. Nature. 2017 Jun 22;546(7659):524-527 [PMID: 28605751]
  31. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  32. Genome Biol. 2020 Dec 29;21(1):306 [PMID: 33372615]
  33. Plant J. 2022 May;110(3):720-734 [PMID: 35122338]
  34. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  35. Plant J. 2021 Jan;105(1):197-208 [PMID: 33118252]
  36. Cell. 1996 Aug 23;86(4):521-9 [PMID: 8752207]
  37. Nature. 2009 Jan 29;457(7229):551-6 [PMID: 19189423]
  38. Science. 2002 Apr 5;296(5565):92-100 [PMID: 11935018]
  39. Nat Commun. 2022 Jun 18;13(1):3511 [PMID: 35717499]
  40. J Integr Plant Biol. 2022 Mar;64(3):649-670 [PMID: 34990066]
  41. Mol Plant. 2022 Jul 4;15(7):1211-1226 [PMID: 35733345]
  42. Science. 2021 Nov 12;374(6569):eabi7489 [PMID: 34762468]
  43. J Comput Biol. 2016 Sep;23(9):718-36 [PMID: 27280382]
  44. Nat Genet. 2020 Dec;52(12):1423-1432 [PMID: 33139952]
  45. Bioinformatics. 2020 Apr 15;36(8):2385-2392 [PMID: 31860070]
  46. Commun Biol. 2021 Sep 7;4(1):1047 [PMID: 34493830]
  47. Genome Res. 2019 Nov;29(11):1889-1899 [PMID: 31649061]
  48. New Phytol. 2022 Sep;235(5):1927-1943 [PMID: 35701896]
  49. Plant Biotechnol J. 2022 Sep;20(9):1642-1644 [PMID: 35748695]
  50. Genome Biol. 2015 Jan 31;16:26 [PMID: 25637298]
  51. Hortic Res. 2021 May 1;8(1):107 [PMID: 33931633]
  52. Annu Rev Plant Biol. 2009;60:561-88 [PMID: 19575590]
  53. Nat Genet. 2022 Jun;54(6):885-896 [PMID: 35654976]
  54. Science. 2017 Mar 3;355(6328):962-965 [PMID: 28154240]
  55. Front Genet. 2022 Mar 31;13:878431 [PMID: 35432473]
  56. Nat Genet. 2020 Oct;52(10):1018-1023 [PMID: 32989320]
  57. Nature. 2008 Apr 24;452(7190):991-6 [PMID: 18432245]
  58. Hortic Res. 2021 Aug 5;8(1):189 [PMID: 34354044]
  59. Plant Cell. 2007 Nov;19(11):3516-29 [PMID: 17981996]
  60. Sci Data. 2019 Jul 19;6(1):127 [PMID: 31324816]
  61. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  62. Nat Plants. 2020 Jun;6(6):630-637 [PMID: 32483326]
  63. Front Plant Sci. 2018 May 14;9:616 [PMID: 29868072]
  64. Nat Biotechnol. 2019 Oct;37(10):1155-1162 [PMID: 31406327]
  65. Evolution. 2006 Jun;60(6):1198-206 [PMID: 16892970]
  66. BMC Plant Biol. 2022 Jul 11;22(1):332 [PMID: 35820796]
  67. Plant Genome. 2021 Mar;14(1):e20072 [PMID: 33605092]
  68. Nat Biotechnol. 2018 Oct 22;: [PMID: 30346939]
  69. Science. 2020 May 22;368(6493): [PMID: 32273397]
  70. Front Plant Sci. 2022 Apr 25;13:890980 [PMID: 35548270]
  71. Genome Biol. 2022 Jul 7;23(1):148 [PMID: 35799188]
  72. Nat Genet. 2022 Mar;54(3):342-348 [PMID: 35241824]
  73. Plant J. 2022 Aug;111(3):836-848 [PMID: 35673966]
  74. Chromosome Res. 2015 Sep;23(3):415-20 [PMID: 26514350]
  75. Mol Plant. 2021 Jun 7;14(6):851-854 [PMID: 33866024]
  76. Curr Opin Plant Biol. 2020 Apr;54:26-33 [PMID: 31981929]
  77. Genomics Proteomics Bioinformatics. 2022 Feb;20(1):4-13 [PMID: 34487862]
  78. Nat Commun. 2020 May 19;11(1):2494 [PMID: 32427850]
  79. Mol Plant. 2022 Mar 7;15(3):520-536 [PMID: 35026436]
  80. Nat Biotechnol. 2022 Oct;40(10):1488-1499 [PMID: 35637420]
  81. Mol Plant. 2022 Aug 1;15(8):1268-1284 [PMID: 35746868]
  82. Bioinformatics. 2016 Dec 15;32(24):3735-3744 [PMID: 27531103]
  83. Science. 2018 Aug 17;361(6403): [PMID: 30115783]
  84. Science. 2002 Apr 5;296(5565):79-92 [PMID: 11935017]
  85. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  86. DNA Res. 2021 Jan 19;28(1): [PMID: 33175097]
  87. Nat Biotechnol. 2022 Sep;40(9):1332-1335 [PMID: 35332338]
  88. PLoS Comput Biol. 2020 May 29;16(5):e1007843 [PMID: 32469863]
  89. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  90. Genomics. 2022 May;114(3):110369 [PMID: 35483655]
  91. Nat Commun. 2019 Nov 25;10(1):5360 [PMID: 31767853]
  92. Comput Struct Biotechnol J. 2020 Aug 01;18:2051-2062 [PMID: 32802277]
  93. Bioinformatics. 2020 May 1;36(9):2896-2898 [PMID: 31971576]
  94. Nat Plants. 2021 Apr;7(4):392-402 [PMID: 33782581]
  95. Nat Plants. 2017 Sep;3(9):696-703 [PMID: 28827752]
  96. Nucleic Acids Res. 2016 Jul 8;44(12):e113 [PMID: 27131372]
  97. Genetics. 1996 Mar;142(3):987-1000 [PMID: 8849904]
  98. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  99. Cell. 2020 Nov 12;183(4):875-889.e17 [PMID: 33035453]
  100. Nat Rev Genet. 2011 Nov 29;13(1):36-46 [PMID: 22124482]
  101. Nat Biotechnol. 2013 Dec;31(12):1119-25 [PMID: 24185095]
  102. Plant J. 2021 Dec;108(6):1830-1848 [PMID: 34661327]
  103. Plant Biotechnol J. 2022 Jun;20(6):1031-1041 [PMID: 35332665]
  104. DNA Res. 2021 Oct 11;28(6): [PMID: 34792565]
  105. Nature. 2015 Nov 26;527(7579):508-11 [PMID: 26560029]
  106. Mol Plant. 2022 Aug 1;15(8):1247-1250 [PMID: 35655433]
  107. Front Plant Sci. 2018 Nov 21;9:1660 [PMID: 30519250]
  108. Genome Res. 2009 Feb;19(2):243-54 [PMID: 19029538]
  109. Nat Genet. 2020 Nov;52(11):1256-1264 [PMID: 33128049]
  110. DNA Res. 2019 Oct 1;26(5):379-389 [PMID: 31334758]
  111. Mol Plant. 2020 Sep 7;13(9):1250-1261 [PMID: 32673760]
  112. Mol Plant. 2021 Oct 4;14(10):1745-1756 [PMID: 34171481]
  113. Trends Plant Sci. 2022 Apr;27(4):391-401 [PMID: 34782248]
  114. Plant Biotechnol J. 2022 Jun;20(6):1182-1196 [PMID: 35247284]
  115. Genomics Proteomics Bioinformatics. 2022 Feb;20(1):14-28 [PMID: 35033678]
  116. Nat Genet. 2019 Oct;51(10):1549-1558 [PMID: 31570895]

MeSH Term

Sequence Analysis, DNA
Genomics
Genome, Plant
Plants
Algorithms
High-Throughput Nucleotide Sequencing

Word Cloud

Created with Highcharts 10.0.0complexassemblyplantgenomegenomessequencingadvancesalgorithmsplantsfullymethodshightechnologyAssemblyComplexpast20 yearstremendoustechnologiescomputationalspurredgenomicresearchthrivingerahundredsdecodedalreadyrangingnonvascularfloweringHoweverstillchallengingremainsdifficultresolveconventionaldueheterozygosityhighlyrepetitivesequencesploidycharacteristicsHereinsummarizechallengesincludingfeasibleexperimentalstrategiesupgradesexistingdifferentphasingMoreoverlistactualcasesprojectsreadersreferdrawuponsolvefutureproblemsrelatedFinallyexpectaccurategaplesstelomere-to-telomerephasedsoonbecomeroutineRecentAdvancesPlantGenomesalgorithmHaplotype-resolvedSequencingTelomere-to-telomere

Similar Articles

Cited By