Mapping of QTLs Associated with Biological Nitrogen Fixation Traits in Peanuts ( L.) Using an Interspecific Population Derived from the Cross between the Cultivated Species and Its Wild Ancestors.

Darius T Nzepang, Djamel Gully, Joël R Nguepjop, Arlette Zaiya Zazou, Hodo-Abalo Tossim, Aissatou Sambou, Jean-François Rami, Valerie Hocher, Saliou Fall, Sergio Svistoonoff, Daniel Fonceka
Author Information
  1. Darius T Nzepang: Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal. ORCID
  2. Djamel Gully: PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  3. Joël R Nguepjop: Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal.
  4. Arlette Zaiya Zazou: Institute of Agricultural Research for Development (IRAD) (IRAD), Maroua, Cameroon.
  5. Hodo-Abalo Tossim: Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal.
  6. Aissatou Sambou: Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal.
  7. Jean-François Rami: Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal.
  8. Valerie Hocher: PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
  9. Saliou Fall: Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal.
  10. Sergio Svistoonoff: PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  11. Daniel Fonceka: Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal. ORCID

Abstract

Peanuts ( L.) are an allotetraploid grain legume mainly cultivated by poor farmers in Africa, in degraded soil and with low input systems. Further understanding nodulation genetic mechanisms could be a relevant option to facilitate the improvement of yield and lift up soil without synthetic fertilizers. We used a subset of 83 chromosome segment substitution lines (CSSLs) derived from the cross between a wild synthetic tetraploid AiAd ( × ) and the cultivated variety Fleur11, and evaluated them for traits related to BNF under shade-house conditions. Three treatments were tested: without nitrogen; with nitrogen; and without nitrogen, but with added0 strain ISRA400. The leaf chlorophyll content and total biomass were used as surrogate traits for BNF. We found significant variations for both traits specially linked to BNF, and four QTLs (quantitative trait loci) were consistently mapped. At all QTLs, the wild alleles decreased the value of the trait, indicating a negative effect on BNF. A detailed characterization of the lines carrying those QTLs in controlled conditions showed that the QTLs affected the nitrogen fixation efficiency, nodule colonization, and development. Our results provide new insights into peanut nodulation mechanisms and could be used to target BNF traits in peanut breeding programs.

Keywords

References

  1. Theor Appl Genet. 2010 Jun;121(1):71-86 [PMID: 20180092]
  2. New Phytol. 2009;183(4):967-979 [PMID: 19594691]
  3. Trends Plant Sci. 2004 Dec;9(12):597-605 [PMID: 15564127]
  4. PLoS Genet. 2013 May;9(5):e1003477 [PMID: 23671421]
  5. J Exp Bot. 2017 Apr 1;68(8):1919-1926 [PMID: 27927992]
  6. Proc Biol Sci. 2011 Sep 7;278(1718):2698-703 [PMID: 21270038]
  7. Sci Rep. 2022 Mar 17;12(1):4591 [PMID: 35301409]
  8. Front Plant Sci. 2013 Feb 25;4:23 [PMID: 23443056]
  9. J Hered. 2001 Jan-Feb;92(1):86-9 [PMID: 11336237]
  10. Mol Ecol. 2004 Aug;13(8):2435-44 [PMID: 15245415]
  11. J Biosci. 2014 Jun;39(3):513-7 [PMID: 24845514]
  12. Mol Plant Microbe Interact. 2009 Nov;22(11):1466-75 [PMID: 19810815]
  13. Proc Biol Sci. 2007 Dec 22;274(1629):3119-26 [PMID: 17939985]
  14. Mol Plant Microbe Interact. 2019 Mar;32(3):271-285 [PMID: 30109978]
  15. Science. 2018 Jul 13;361(6398): [PMID: 29794220]
  16. Mol Genet Genomics. 2019 Apr;294(2):365-378 [PMID: 30467595]
  17. BMC Plant Biol. 2012 Feb 17;12:26 [PMID: 22340522]
  18. Int J Mol Sci. 2017 Feb 04;18(2): [PMID: 28165413]
  19. J Exp Bot. 2017 Apr 1;68(8):1905-1918 [PMID: 27756807]
  20. Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15200-15209 [PMID: 31285337]
  21. Front Microbiol. 2019 Sep 04;10:2041 [PMID: 31551977]
  22. Ecol Evol. 2017 May 10;7(12):4367-4376 [PMID: 28649348]
  23. Mol Plant Microbe Interact. 2016 Jun;29(6):447-57 [PMID: 26959836]
  24. Mol Plant Microbe Interact. 2022 Feb;35(2):131-145 [PMID: 34689599]
  25. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13548-53 [PMID: 15340138]
  26. Plant Cell. 2020 Jan;32(1):15-41 [PMID: 31649123]
  27. Front Genet. 2020 Aug 18;11:00973 [PMID: 33014021]
  28. Syst Appl Microbiol. 2017 Jun;40(4):215-226 [PMID: 28372899]
  29. Front Plant Sci. 2022 Jun 23;13:922982 [PMID: 35812902]
  30. Trends Ecol Evol. 2020 May;35(5):426-439 [PMID: 32294424]
  31. Annu Rev Plant Biol. 2019 Apr 29;70:727-751 [PMID: 31035827]
  32. Hereditas. 2013 Jun;150(2-3):17-25 [PMID: 23865962]
  33. Biom J. 2008 Jun;50(3):346-63 [PMID: 18481363]
  34. Front Plant Sci. 2016 Apr 08;7:454 [PMID: 27092165]
  35. Plant Physiol. 2007 Jun;144(2):575-81 [PMID: 17556520]
  36. PLoS One. 2012;7(11):e48642 [PMID: 23185268]
  37. Nat Genet. 2016 Apr;48(4):438-46 [PMID: 26901068]
  38. New Phytol. 2015 Apr;206(1):107-117 [PMID: 25866856]
  39. Planta. 1970 Dec;92(4):301-8 [PMID: 24500300]
  40. Nature. 2003 Sep 4;425(6953):78-81 [PMID: 12955144]
  41. Sci Rep. 2021 Mar 1;11(1):4874 [PMID: 33649428]
  42. Plant Mol Biol. 2016 Apr;90(6):635-44 [PMID: 26085172]
  43. Mol Plant Microbe Interact. 2018 Feb;31(2):187-199 [PMID: 28876173]
  44. Mol Plant Microbe Interact. 2010 Dec;23(12):1537-44 [PMID: 21039272]
  45. Heredity (Edinb). 2016 Aug;117(2):84-93 [PMID: 27118154]
  46. Annu Rev Plant Biol. 2013;64:781-805 [PMID: 23451778]
  47. J Exp Bot. 2021 Feb 24;72(4):1104-1118 [PMID: 33130897]
  48. BMC Plant Biol. 2009 Aug 03;9:103 [PMID: 19650911]
  49. Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21758-21768 [PMID: 31591240]

MeSH Term

Quantitative Trait Loci
Arachis
Chromosome Mapping
Nitrogen Fixation
Plant Breeding

Word Cloud

Created with Highcharts 10.0.0BNFQTLstraitsnitrogenwithoutusedwildpeanutPeanutsLcultivatedsoilnodulationmechanismssyntheticlinesconditionstraitallotetraploidgrainlegumemainlypoorfarmersAfricadegradedlowinputsystemsunderstandinggeneticrelevantoptionfacilitateimprovementyieldliftfertilizerssubset83chromosomesegmentsubstitutionCSSLsderivedcrosstetraploidAiAd×varietyFleur11evaluatedrelatedshade-houseThreetreatmentstested:added0strainISRA400leafchlorophyllcontenttotalbiomasssurrogatefoundsignificantvariationsspeciallylinkedfourquantitativelociconsistentlymappedallelesdecreasedvalueindicatingnegativeeffectdetailedcharacterizationcarryingcontrolledshowedaffectedfixationefficiencynodulecolonizationdevelopmentresultsprovidenewinsightstargetbreedingprogramsMappingAssociatedBiologicalNitrogenFixationTraitsUsingInterspecificPopulationDerivedCrossCultivatedSpeciesWildAncestorsplantnutritionsustainableagriculturesymbiosisspecies

Similar Articles

Cited By