The Special and General Mechanism of Cyanobacterial Harmful Algal Blooms.

Wenduo Cheng, Somin Hwang, Qisen Guo, Leyuan Qian, Weile Liu, Yang Yu, Li Liu, Yi Tao, Huansheng Cao
Author Information
  1. Wenduo Cheng: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  2. Somin Hwang: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  3. Qisen Guo: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  4. Leyuan Qian: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  5. Weile Liu: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  6. Yang Yu: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  7. Li Liu: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.
  8. Yi Tao: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. ORCID
  9. Huansheng Cao: Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China.

Abstract

Cyanobacterial harmful algal blooms (CyanoHABs) are longstanding aquatic hazards worldwide, of which the mechanism is not yet fully understood, i.e., the process in which cyanobacteria establish dominance over coexisting algae in the same eutrophic waters. The dominance of CyanoHABs represents a deviation from their low abundance under conventional evolution in the oligotrophic state, which has been the case since the origin of cyanobacteria on early Earth. To piece together a comprehensive mechanism of CyanoHABs, we revisit the origin and adaptive radiation of cyanobacteria in oligotrophic Earth, demonstrating ubiquitous adaptive radiation enabled by corresponding biological functions under various oligotrophic conditions. Next, we summarize the biological functions (ecophysiology) which drive CyanoHABs and ecological evidence to synthesize a working mechanism at the population level (the special mechanism) for CyanoHABs: CyanoHABs are the consequence of the synergistic interaction between superior cyanobacterial ecophysiology and elevated nutrients. Interestingly, these biological functions are not a result of positive selection by water eutrophication, but an adaptation to a longstanding oligotrophic state as all the genes in cyanobacteria are under strong negative selection. Last, to address the relative dominance of cyanobacteria over coexisting algae, we postulate a "general" mechanism of CyanoHABs at the community level from an energy and matter perspective: cyanobacteria are simpler life forms and thus have lower per capita nutrient demand for growth than coexisting eukaryotic algae. We prove this by comparing cyanobacteria and eukaryotic algae in cell size and structure, genome size, size of genome-scale metabolic networks, cell content, and finally the golden standard-field studies with nutrient supplementation in the same waters. To sum up, the comprehensive mechanism of CyanoHABs comprises a necessary condition, which is the general mechanism, and a sufficient condition, which is the special mechanism. One prominent prediction based on this tentative comprehensive mechanism is that eukaryotic algal blooms will coexist with or replace CyanoHABs if eutrophication continues and goes over the threshold nutrient levels for eukaryotic algae. This two-fold comprehensive mechanism awaits further theoretic and experimental testing and provides an important guide to control blooms of all algal species.

Keywords

References

  1. Plant Physiol. 2016 Sep;172(1):589-602 [PMID: 27372244]
  2. BMC Genomics. 2008 Jun 05;9:274 [PMID: 18534010]
  3. mBio. 2019 May 21;10(3): [PMID: 31113897]
  4. Brief Bioinform. 2019 Jul 19;20(4):1590-1603 [PMID: 29596572]
  5. J Water Resour Prot. 2017 Oct 31;9(11):1-29 [PMID: 30079124]
  6. Nature. 2017 Jan 19;541(7637):386-389 [PMID: 28002400]
  7. BMC Genomics. 2015 Oct 16;16:799 [PMID: 26475325]
  8. Photosynth Res. 2018 Oct;138(1):11-37 [PMID: 29603081]
  9. Adv Exp Med Biol. 2008;619:855-65 [PMID: 18461793]
  10. PLoS One. 2016 May 06;11(5):e0155038 [PMID: 27152931]
  11. PLoS One. 2015 Dec 07;10(12):e0144430 [PMID: 26640947]
  12. Nat Commun. 2021 Aug 6;12(1):4742 [PMID: 34362891]
  13. Environ Sci Technol. 2017 Aug 15;51(16):8933-8943 [PMID: 28650153]
  14. Biochim Biophys Acta Bioenerg. 2017 Apr;1858(4):276-287 [PMID: 28012908]
  15. ISME J. 2021 Jan;15(1):211-227 [PMID: 32943748]
  16. Science. 2006 Mar 24;311(5768):1764-7 [PMID: 16556842]
  17. Limnol Oceanogr. 2020 Jan;65(Suppl 1):S194-S207 [PMID: 32051648]
  18. PLoS Comput Biol. 2012;8(4):e1002460 [PMID: 22529767]
  19. Genome Biol Evol. 2021 Feb 3;13(2): [PMID: 33231627]
  20. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8739-44 [PMID: 16731624]
  21. Science. 2004 Oct 1;306(5693):79-86 [PMID: 15459382]
  22. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33320930]
  23. Sci Adv. 2017 Nov 22;3(11):eaao4795 [PMID: 29202032]
  24. mBio. 2020 Jun 30;11(3): [PMID: 32605981]
  25. BMC Syst Biol. 2012 Jun 15;6:71 [PMID: 22703714]
  26. BMC Syst Biol. 2010 Nov 17;4:156 [PMID: 21083885]
  27. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1791-6 [PMID: 23319632]
  28. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2510-5 [PMID: 18268351]
  29. Life (Basel). 2014 Dec 15;4(4):988-1012 [PMID: 25517134]
  30. J Environ Sci (China). 2010;22(1):32-9 [PMID: 20397384]
  31. Mol Syst Biol. 2011 Aug 02;7:518 [PMID: 21811229]
  32. Water Res. 2012 Feb 1;46(2):442-52 [PMID: 22123520]
  33. Microbiol Spectr. 2022 Dec 21;10(6):e0319422 [PMID: 36445094]
  34. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8344-E8353 [PMID: 27911809]
  35. Environ Sci Technol. 2016 Sep 6;50(17):8923-9 [PMID: 27494041]
  36. mBio. 2020 Jun 30;11(3): [PMID: 32605986]
  37. Curr Biol. 2014 Mar 31;24(7):R276-8 [PMID: 24698376]
  38. DNA Res. 2007 Dec 31;14(6):247-56 [PMID: 18192279]
  39. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33495331]
  40. Science. 2002 Aug 16;297(5584):1137-42 [PMID: 12183619]
  41. Nature. 2002 May 9;417(6885):159-62 [PMID: 12000956]
  42. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2678-83 [PMID: 22308420]
  43. BMC Genomics. 2011 Dec 22;12 Suppl 4:S5 [PMID: 22369158]
  44. Harmful Algae. 2008 Dec;8(1):3-13 [PMID: 28781587]
  45. Bioresour Technol. 2016 Aug;213:103-110 [PMID: 26995318]
  46. Harmful Algae. 2020 Jan;91:101731 [PMID: 32057341]
  47. Elife. 2014 Apr 29;:e02043 [PMID: 24842993]
  48. BMC Genomics. 2020 Oct 27;21(1):743 [PMID: 33109102]
  49. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5442-7 [PMID: 16569695]

Grants

  1. 32171565 and 52070117/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0mechanismCyanoHABscyanobacteriaalgaealgalbloomsoligotrophiccomprehensivenutrienteukaryoticdominancecoexistingadaptiveradiationbiologicalfunctionsecophysiologyselectioneutrophicationsizeCyanobacterialharmfullongstandingwatersstateoriginEarthlevelspecialcyanobacterialwaterdemandcellconditionaquatichazardsworldwideyetfullyunderstoodieprocessestablisheutrophicrepresentsdeviationlowabundanceconventionalevolutioncasesinceearlypiecetogetherrevisitdemonstratingubiquitousenabledcorrespondingvariousconditionsNextsummarizedriveecologicalevidencesynthesizeworkingpopulationCyanoHABs:consequencesynergisticinteractionsuperiorelevatednutrientsInterestinglyresultpositiveadaptationgenesstrongnegativeLastaddressrelativepostulate"general"communityenergymatterperspective:simplerlifeformsthuslowerpercapitagrowthprovecomparingstructuregenomegenome-scalemetabolicnetworkscontentfinallygoldenstandard-fieldstudiessupplementationsumcomprisesnecessarygeneralsufficientOneprominentpredictionbasedtentativewillcoexistreplacecontinuesgoesthresholdlevelstwo-foldawaitstheoreticexperimentaltestingprovidesimportantguidecontrolspeciesSpecialGeneralMechanismHarmfulAlgalBloomspurifying

Similar Articles

Cited By (1)