Bioactive Compounds and Antioxidant Composition of Nut Bars with Addition of Various Edible Insect Flours.

Dorota Gumul, Joanna Oracz, Stanisław Kowalski, Anna Mikulec, Magdalena Skotnicka, Kaja Karwowska, Anna Areczuk
Author Information
  1. Dorota Gumul: Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland.
  2. Joanna Oracz: Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland. ORCID
  3. Stanisław Kowalski: Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland. ORCID
  4. Anna Mikulec: Faculty of Engineering Sciences, University of Applied Science in Nowy Sacz, 1a Zamenhofa Street, 33-300 Nowy Sacz, Poland. ORCID
  5. Magdalena Skotnicka: Department of Commodity Science, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland. ORCID
  6. Kaja Karwowska: Department of Commodity Science, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland.
  7. Anna Areczuk: Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland.

Abstract

Edible insects represent a new functional source of nutrients that can contribute to solving nutritional deficiency problems. The antioxidant potential and bioactive compounds of nut bars with the addition of three edible insects were evaluated. L., P. and L. flours were used. A 30% share of insect flour in the bars resulted in significantly greater antioxidant activity (TPC increased from 190.19 for standard bars to 309.45 mg catechin/100 g for bars with 30% addition of cricket flour). Insect flour contributed significantly to an increase in 2,5-dihydrobenzoic acid (from 0.12 for bars with a 15% share of buffalo worm flour to 0.44 mg/100 g in the case of bars with a 30% share of cricket flour) and chlorogenic acid in all bars (from 0.58 for bars with a 15% share of cricket flour to 3.28 mg/100 g for bars with a 30% addition of buffalo worm flour), compared to the standard. The highest content of tocopherols was found in bars with cricket flour, compared to standard bars (43.57 and 24.06 mg/100 g of fat, respectively). The dominant sterol in bars enriched with insect powder was cholesterol. The highest amount of it was found in cricket bars, and the lowest in mealworm bars (64.16 and 21.62 mg/100 g of fat, respectively). The enrichment of nut bars with insect flours raises the levels of valuable phytosterols in the final product. The addition of edible insect flours reduced the perception of most sensory attributes of the bars, compared to the standard bar.

Keywords

References

  1. Antioxidants (Basel). 2019 Nov 15;8(11): [PMID: 31731784]
  2. Chem Res Toxicol. 2003 Jan;16(1):48-55 [PMID: 12693030]
  3. Foods. 2021 Sep 28;10(10): [PMID: 34681345]
  4. Z Naturforsch C J Biosci. 2004 May-Jun;59(5-6):437-44 [PMID: 18998416]
  5. Free Radic Biol Med. 1999 May;26(9-10):1231-7 [PMID: 10381194]
  6. Food Res Int. 2019 Jan;115:135-149 [PMID: 30599925]
  7. J Agric Food Chem. 2000 Jun;48(6):2122-6 [PMID: 10888509]
  8. Asia Pac J Clin Nutr. 2008;17 Suppl 1:87-90 [PMID: 18296309]
  9. Phytochemistry. 2008 Mar;69(5):1141-9 [PMID: 18164738]
  10. Molecules. 2022 Dec 02;27(23): [PMID: 36500560]
  11. Food Chem. 2012 Oct 15;134(4):1885-91 [PMID: 23442634]
  12. Molecules. 2016 Oct 21;21(10): [PMID: 27775667]
  13. Acta Sci Pol Technol Aliment. 2018 Jul-Sep;17(3):227-233 [PMID: 30269462]
  14. Eur J Clin Nutr. 2009 Jul;63(7):813-20 [PMID: 19491917]
  15. PLoS One. 2015 May 13;10(5):e0127171 [PMID: 25970517]
  16. Biomolecules. 2020 Mar 04;10(3): [PMID: 32143493]
  17. J Agric Food Chem. 2005 Mar 23;53(6):1841-56 [PMID: 15769103]
  18. J Agric Food Chem. 2008 Aug 13;56(15):6185-205 [PMID: 18593176]
  19. Food Chem. 2022 Jul 30;383:132397 [PMID: 35183962]
  20. Foods. 2022 Dec 20;12(1): [PMID: 36613217]
  21. Front Nutr. 2019 Jul 15;6:106 [PMID: 31380385]
  22. Pharmacol Rev. 2000 Dec;52(4):673-751 [PMID: 11121513]
  23. Am J Clin Nutr. 2005 Jan;81(1 Suppl):215S-217S [PMID: 15640483]
  24. Bull Entomol Res. 2011 Oct;101(5):613-22 [PMID: 21554801]
  25. Nutrients. 2021 Aug 16;13(8): [PMID: 34444970]
  26. Food Chem. 2020 Mar 30;309:125742 [PMID: 31704068]
  27. PLoS One. 2019 Feb 1;14(2):e0211747 [PMID: 30707742]
  28. Am J Clin Nutr. 2005 Jan;81(1 Suppl):292S-297S [PMID: 15640493]
  29. Nutrients. 2020 Jan 21;12(2): [PMID: 31973186]
  30. Food Chem. 2018 Oct 1;262:39-47 [PMID: 29751919]
  31. J Chem Ecol. 2006 Mar;32(3):537-46 [PMID: 16572299]
  32. Food Chem. 2015 Jan 15;167:358-62 [PMID: 25148998]

MeSH Term

Animals
Antioxidants
Edible Insects
Flour
Buffaloes
Nuts
Tenebrio
Insecta

Chemicals

Antioxidants

Word Cloud

Created with Highcharts 10.0.0barsflourgcricketaddition30%shareinsectstandardmg/100insectsantioxidantnutedibleflours0comparedEdiblecompoundsLsignificantlyInsectacid15%buffalowormhighesttocopherolsfoundfatrespectivelyphytosterolsbarrepresentnewfunctionalsourcenutrientscancontributesolvingnutritionaldeficiencyproblemspotentialbioactivethreeevaluatedPusedresultedgreateractivityTPCincreased1901930945mgcatechin/100contributedincrease25-dihydrobenzoic1244casechlorogenic58328content43572406dominantsterolenrichedpowdercholesterolamountlowestmealworm64162162enrichmentraiseslevelsvaluablefinalproductreducedperceptionsensoryattributesBioactiveCompoundsAntioxidantCompositionNutBarsAdditionVariousFlourspropertiesphenolic

Similar Articles

Cited By