Memristor-Based Signal Processing for Compressed Sensing.

Rui Wang, Wanlin Zhang, Saisai Wang, Tonglong Zeng, Xiaohua Ma, Hong Wang, Yue Hao
Author Information
  1. Rui Wang: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. ORCID
  2. Wanlin Zhang: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
  3. Saisai Wang: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China.
  4. Tonglong Zeng: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
  5. Xiaohua Ma: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
  6. Hong Wang: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
  7. Yue Hao: Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

Abstract

With the rapid progress of artificial intelligence, various perception networks were constructed to enable Internet of Things (IoT) applications, thereby imposing formidable challenges to communication bandwidth and information security. Memristors, which exhibit powerful analog computing capabilities, emerged as a promising solution expected to address these challenges by enabling the development of the next-generation high-speed digital compressed sensing (CS) technologies for edge computing. However, the mechanisms and fundamental properties of memristors for achieving CS remain unclear, and the underlying principles for selecting different implementation methods based on various application scenarios have yet to be elucidated. A comprehensive overview of memristor-based CS techniques is currently lacking. In this article, we systematically presented CS requirements on device performance and hardware implementation. The relevant models were analyzed and discussed from the mechanism level to elaborate the memristor CS system scientifically. In addition, the method of deploying CS hardware using the powerful signal processing capabilities and unique performance of memristors was further reviewed. Subsequently, the potential of memristors in all-in-one compression and encryption was anticipated. Finally, existing challenges and future outlooks for memristor-based CS systems were discussed.

Keywords

References

  1. Nanomaterials (Basel). 2019 Mar 11;9(3): [PMID: 30862000]
  2. Nat Nanotechnol. 2021 Oct;16(10):1079-1085 [PMID: 34239120]
  3. Nanoscale. 2018 Feb 8;10(6):2721-2726 [PMID: 29419836]
  4. Mater Horiz. 2021 Feb 1;8(2):619-629 [PMID: 34821279]
  5. Nanomaterials (Basel). 2020 Aug 07;10(8): [PMID: 32784590]
  6. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4123-4128 [PMID: 30782810]
  7. Nano Lett. 2012 May 9;12(5):2179-86 [PMID: 21668029]
  8. Adv Mater. 2013 Mar 25;25(12):1774-9 [PMID: 23355110]
  9. Nature. 2015 May 7;521(7550):61-4 [PMID: 25951284]
  10. Small. 2022 Jun;18(23):e2201111 [PMID: 35534444]
  11. J Phys Chem Lett. 2022 Oct 27;13(42):9941-9949 [PMID: 36260056]
  12. Nanomaterials (Basel). 2022 Mar 25;12(7): [PMID: 35407193]
  13. Nanomaterials (Basel). 2022 Jun 25;12(13): [PMID: 35808021]
  14. Nat Commun. 2012 Mar 13;3:732 [PMID: 22415823]
  15. Adv Mater. 2018 Mar;30(9): [PMID: 29318659]
  16. Nat Commun. 2020 Aug 26;11(1):4273 [PMID: 32848139]
  17. Science. 2019 Apr 26;364(6438):326-328 [PMID: 31023909]
  18. Phys Rev Lett. 1994 May 23;72(21):3389-3392 [PMID: 10056186]
  19. Nat Commun. 2021 Jun 17;12(1):3681 [PMID: 34140514]
  20. Adv Mater. 2014 May;26(17):2730-5 [PMID: 24706476]
  21. Nat Mater. 2007 Nov;6(11):833-40 [PMID: 17972938]
  22. Nanomaterials (Basel). 2022 Jun 19;12(12): [PMID: 35745449]
  23. Nat Nanotechnol. 2016 Aug;11(8):693-9 [PMID: 27183057]
  24. Nat Mater. 2006 Apr;5(4):312-20 [PMID: 16565712]
  25. Nat Nanotechnol. 2017 Aug;12(8):784-789 [PMID: 28530717]
  26. Nat Mater. 2019 Apr;18(4):309-323 [PMID: 30894760]
  27. Nanotechnology. 2011 Jun 24;22(25):254003 [PMID: 21572191]
  28. Adv Sci (Weinh). 2020 Jul 26;7(18):2001842 [PMID: 32999852]
  29. Adv Mater. 2018 Jan;30(1): [PMID: 28985005]
  30. ACS Nano. 2014 Jul 22;8(7):6998-7004 [PMID: 24884237]
  31. Nano Lett. 2013 Aug 14;13(8):3671-7 [PMID: 23855543]
  32. Nat Commun. 2021 Jan 12;12(1):319 [PMID: 33436611]
  33. ACS Nano. 2022 Apr 26;16(4):6847-6857 [PMID: 35333049]
  34. Nat Commun. 2021 Jan 18;12(1):408 [PMID: 33462233]
  35. Adv Mater. 2009 Jul 13;21(25-26):2632-2663 [PMID: 36751064]
  36. Nat Commun. 2018 Jun 19;9(1):2385 [PMID: 29921923]

Grants

  1. 62188102/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0CSchallengescomputingmemristorsvariouspowerfulcapabilitiescompressedsensingedgeimplementationmemristor-basedperformancehardwarediscussedmemristorcompressionencryptionrapidprogressartificialintelligenceperceptionnetworksconstructedenableInternetThingsIoTapplicationstherebyimposingformidablecommunicationbandwidthinformationsecurityMemristorsexhibitanalogemergedpromisingsolutionexpectedaddressenablingdevelopmentnext-generationhigh-speeddigitaltechnologiesHowevermechanismsfundamentalpropertiesachievingremainunclearunderlyingprinciplesselectingdifferentmethodsbasedapplicationscenariosyetelucidatedcomprehensiveoverviewtechniquescurrentlylackingarticlesystematicallypresentedrequirementsdevicerelevantmodelsanalyzedmechanismlevelelaboratesystemscientificallyadditionmethoddeployingusingsignalprocessinguniquereviewedSubsequentlypotentialall-in-oneanticipatedFinallyexistingfutureoutlookssystemsMemristor-BasedSignalProcessingCompressedSensinginherentvariation

Similar Articles

Cited By