The Modulation of Immune Responses in -Infected Fish Cells through MAPK/ERK Signalling.

Tuchakorn Lertwanakarn, Matepiya Khemthong, Puntanut Tattiyapong, Win Surachetpong
Author Information
  1. Tuchakorn Lertwanakarn: Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand. ORCID
  2. Matepiya Khemthong: Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
  3. Puntanut Tattiyapong: Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
  4. Win Surachetpong: Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand. ORCID

Abstract

tilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control methods, the understanding of this viral infection and the associated host cell responses remains incomplete. In this study, the involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in the early stages of TiLV infection was investigated. The results showed a distinct pattern of ERK phosphorylation (p-ERK) upon TiLV infection in two fish cell lines, E-11 and TiB. Specifically, the p-ERK levels in the TiB cells decreased substantially, while the p-ERK levels in the E-11 cells remained constant. Interestingly, a large number of cytopathic effects were observed in the infected E-11 cells but none in the infected TiB cells. Furthermore, when p-ERK was suppressed using the inhibitor PD0325901, a significant reduction in the TiLV load and decrease in the and gene expression levels were observed in the TiB cells in days 1-7 following infection. These findings highlight the role of the MAPK/ERK signalling pathway and provide new insights into the cellular mechanisms during TiLV infection that could be useful in developing new strategies to control this virus.

Keywords

References

  1. Sci Rep. 2020 Nov 23;10(1):20364 [PMID: 33230226]
  2. J Virol. 2007 Jan;81(2):446-56 [PMID: 17079328]
  3. Cell Microbiol. 2009 Jun;11(6):872-9 [PMID: 19290912]
  4. Biol Chem. 2008 Oct;389(10):1273-82 [PMID: 18713014]
  5. J Fish Dis. 2022 Jan;45(1):77-87 [PMID: 34580880]
  6. J Fish Dis. 2022 Aug;45(8):1117-1132 [PMID: 35514291]
  7. Nat Rev Immunol. 2007 Mar;7(3):202-12 [PMID: 17318231]
  8. J Fish Dis. 2023 Feb 27;: [PMID: 36848441]
  9. J Virol. 2002 Jan;76(2):817-28 [PMID: 11752171]
  10. Biochem Pharmacol. 2008 Mar 15;75(6):1370-80 [PMID: 18241838]
  11. BMC Genomics. 2021 Jun 9;22(1):426 [PMID: 34107887]
  12. J Fish Dis. 2014 Jun;37(6):583-9 [PMID: 23802941]
  13. J Biol Chem. 2011 Dec 2;286(48):41171-41182 [PMID: 21994950]
  14. PLoS One. 2015 Aug 25;10(8):e0136506 [PMID: 26305564]
  15. Viruses. 2022 Jul 15;14(7): [PMID: 35891526]
  16. Front Cell Dev Biol. 2022 Dec 16;10:1075364 [PMID: 36605723]
  17. Endocr Rev. 2001 Apr;22(2):153-83 [PMID: 11294822]
  18. J Virol. 2001 May;75(10):4871-7 [PMID: 11312358]
  19. J Virol Methods. 2021 Jan;287:113989 [PMID: 33035566]
  20. Fish Shellfish Immunol. 2021 Apr;111:208-219 [PMID: 33577877]
  21. J Fish Dis. 2018 Feb;41(2):255-261 [PMID: 29027697]
  22. Fish Shellfish Immunol. 2020 Jun;101:1-8 [PMID: 32201348]
  23. Nat Cell Biol. 2001 Mar;3(3):301-5 [PMID: 11231581]
  24. J Fish Dis. 2020 Oct;43(10):1115-1132 [PMID: 32829488]
  25. Nature. 2005 Feb 3;433(7025):477-80 [PMID: 15690031]
  26. Fish Shellfish Immunol. 2020 Dec;107(Pt A):289-300 [PMID: 33096246]
  27. Microb Pathog. 2022 May;166:105510 [PMID: 35421555]
  28. J Clin Microbiol. 2014 Dec;52(12):4137-46 [PMID: 25232154]
  29. J Fish Dis. 2022 Sep;45(9):1389-1401 [PMID: 35696542]
  30. Pathogens. 2020 Nov 06;9(11): [PMID: 33172079]
  31. Fish Shellfish Immunol. 2019 Jun;89:281-289 [PMID: 30953781]
  32. J Virol. 2007 Feb;81(3):1230-40 [PMID: 17108034]
  33. Fish Shellfish Immunol. 2022 Dec;131:972-979 [PMID: 36351543]
  34. J Biol Chem. 2020 Mar 6;295(10):3000-3016 [PMID: 31996375]
  35. Vet Microbiol. 2017 Aug;207:170-177 [PMID: 28757020]
  36. Virus Res. 2018 Jul 15;253:48-61 [PMID: 29864503]
  37. J Virol. 2002 Apr;76(7):3365-73 [PMID: 11884562]
  38. Pathogens. 2021 Dec 10;10(12): [PMID: 34959571]
  39. J Biol Chem. 1999 Sep 24;274(39):27981-8 [PMID: 10488148]
  40. Fish Shellfish Immunol. 2019 Mar;86:507-515 [PMID: 30513386]
  41. J Fish Dis. 2018 Dec;41(12):1803-1809 [PMID: 30320411]
  42. Virology. 2005 Sep 15;340(1):105-15 [PMID: 16005928]

MeSH Term

Animals
Extracellular Signal-Regulated MAP Kinases
Tilapia
Fish Diseases
RNA Viruses
Viruses
Immunity

Chemicals

Extracellular Signal-Regulated MAP Kinases

Word Cloud

Created with Highcharts 10.0.0cellsTiLVinfectionvirusp-ERKTiBMAPK/ERKE-11levelslaketilapiacontrolviralcellmitogen-activatedproteinkinase/extracellularsignal-regulatedkinasepathwayfishobservedinfectednewTilapianovelRNAcausingsubstantialeconomiclossesacrossglobalindustryDespiteextensiveresearchpotentialvaccinesdiseasemethodsunderstandingassociatedhostresponsesremainsincompletestudyinvolvementearlystagesinvestigatedresultsshoweddistinctpatternERKphosphorylationupontwolinesSpecificallydecreasedsubstantiallyremainedconstantInterestinglylargenumbercytopathiceffectsnoneFurthermoresuppressedusinginhibitorPD0325901significantreductionloaddecreasegeneexpressiondays1-7followingfindingshighlightrolesignallingprovideinsightscellularmechanismsusefuldevelopingstrategiesModulationImmuneResponses-InfectedFishCellsSignallingreplication

Similar Articles

Cited By (4)