In sickness and in health: the dynamics of the fruit bat gut microbiota under a bacterial antigen challenge and its association with the immune response.

Tali S Berman, Maya Weinberg, Kelsey R Moreno, Gábor Á Czirják, Yossi Yovel
Author Information
  1. Tali S Berman: Department of Zoology, Tel Aviv University, Tel Aviv - Yafo, Israel.
  2. Maya Weinberg: Department of Zoology, Tel Aviv University, Tel Aviv - Yafo, Israel.
  3. Kelsey R Moreno: Department of Zoology, Tel Aviv University, Tel Aviv - Yafo, Israel.
  4. Gábor Á Czirják: Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
  5. Yossi Yovel: Department of Zoology, Tel Aviv University, Tel Aviv - Yafo, Israel.

Abstract

Introduction: Interactions between the gut microbiome (GM) and the immune system influence host health and fitness. However, few studies have investigated this link and GM dynamics during disease in wild species. Bats (Mammalia: Chiroptera) have an exceptional ability to cope with intracellular pathogens and a unique GM adapted to powered flight. Yet, the contribution of the GM to bat health, especially immunity, or how it is affected by disease, remains unknown.
Methods: Here, we examined the dynamics of the Egyptian fruit bats' () GM during health and disease. We provoked an inflammatory response in bats using lipopolysaccharides (LPS), an endotoxin of Gram-negative bacteria. We then measured the inflammatory marker haptoglobin, a major acute phase protein in bats, and analyzed the GM (anal swabs) of control and challenged bats using high-throughput 16S rRNA sequencing, before the challenge, 24h and 48h post challenge.
Results: We revealed that the antigen challenge causes a shift in the composition of the bat GM (). This shift was significantly correlated with haptoglobin concentration, but more strongly with sampling time. Eleven bacterial sequences were correlated with haptoglobin concentration and nine were found to be potential predictors of the strength of the immune response, and implicit of infection severity, notably and . The bat GM showed high resilience, regaining the colony's group GM composition rapidly, as bats resumed foraging and social activities.
Conclusion: Our results demonstrate a tight link between bat immune response and changes in their GM, and emphasize the importance of integrating microbial ecology in ecoimmunological studies of wild species. The resilience of the GM may provide this species with an adaptive advantage to cope with infections and maintain colony health.

Keywords

References

  1. mSphere. 2018 Sep 19;3(5): [PMID: 30232167]
  2. Trends Microbiol. 2022 Jul;30(7):632-642 [PMID: 35034797]
  3. Nat Ecol Evol. 2019 Jan;3(1):116-124 [PMID: 30532043]
  4. Integr Comp Biol. 2017 Oct 1;57(4):690-704 [PMID: 28985326]
  5. Comp Biochem Physiol A Mol Integr Physiol. 2004 Sep;139(1):65-9 [PMID: 15471682]
  6. Nat Commun. 2017 Jan 12;8:14040 [PMID: 28079112]
  7. Bioinformatics. 2020 Aug 15;36(14):4106-4115 [PMID: 32315393]
  8. J Exp Med. 1984 Dec 1;160(6):1656-71 [PMID: 6096475]
  9. Microbiome. 2022 Mar 8;10(1):41 [PMID: 35256003]
  10. Methods Mol Biol. 2018;1783:149-169 [PMID: 29767361]
  11. Dev Comp Immunol. 2021 Jun;119:104017 [PMID: 33476670]
  12. Nat Rev Microbiol. 2019 Mar;17(3):156-166 [PMID: 30546113]
  13. Cell Res. 2020 Jun;30(6):492-506 [PMID: 32433595]
  14. Nat Ecol Evol. 2019 Jan;3(1):18-19 [PMID: 30532041]
  15. NPJ Parkinsons Dis. 2020 Jun 12;6:11 [PMID: 32566740]
  16. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  17. Sci Rep. 2022 Sep 10;12(1):15259 [PMID: 36088405]
  18. Anim Microbiome. 2021 Apr 20;3(1):30 [PMID: 33879261]
  19. Environ Microbiol. 2022 Mar;24(3):1484-1498 [PMID: 34472188]
  20. PLoS One. 2019 May 16;14(5):e0215946 [PMID: 31095603]
  21. Nat Rev Microbiol. 2017 Oct;15(10):630-638 [PMID: 28626231]
  22. J Exp Biol. 2022 Apr 1;225(7): [PMID: 35311905]
  23. mBio. 2019 Jun 4;10(3): [PMID: 31164469]
  24. PLoS One. 2015 Apr 08;10(4):e0121329 [PMID: 25853558]
  25. Front Microbiol. 2019 Oct 01;10:2247 [PMID: 31632369]
  26. Biol Rev Camb Philos Soc. 2009 Aug;84(3):349-73 [PMID: 19438430]
  27. Front Microbiol. 2017 Jun 30;8:1215 [PMID: 28713344]
  28. Ann N Y Acad Sci. 2021 Dec;1505(1):178-190 [PMID: 33876431]
  29. Inflamm Bowel Dis. 2016 May;22(5):1137-50 [PMID: 27070911]
  30. Biol Open. 2019 Nov 1;8(10): [PMID: 31649120]
  31. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  32. Int Immunol. 2021 Mar 31;33(4):197-209 [PMID: 33367688]
  33. R Soc Open Sci. 2018 May 2;5(5):180041 [PMID: 29892443]
  34. Emerg Infect Dis. 2011 Mar;17(3):449-56 [PMID: 21392436]
  35. Ecol Evol. 2018 Sep 20;8(19):9793-9802 [PMID: 30386575]
  36. FEBS Lett. 2022 Apr;596(7):849-875 [PMID: 35262962]
  37. Front Microbiol. 2015 Mar 17;6:155 [PMID: 25852652]
  38. J Vet Diagn Invest. 2008 Nov;20(6):716-24 [PMID: 18987220]
  39. Anim Microbiome. 2022 Aug 13;4(1):50 [PMID: 35964144]
  40. Pathogens. 2019 Dec 20;9(1): [PMID: 31861867]
  41. Nat Rev Gastroenterol Hepatol. 2012 Sep 04;9(10):577-89 [PMID: 22945443]
  42. Microbiol Spectr. 2021 Dec 22;9(3):e0152521 [PMID: 34817279]
  43. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 28;375(1808):20190601 [PMID: 32772666]
  44. Mol Ecol. 2014 Oct;23(19):4831-45 [PMID: 24975397]
  45. Environ Microbiol. 2015 Nov;17(11):4280-9 [PMID: 25580582]
  46. Front Microbiol. 2021 Oct 12;12:735122 [PMID: 34712210]
  47. PLoS Pathog. 2015 Oct 01;11(10):e1005168 [PMID: 26426272]
  48. Mol Ecol. 2022 Jun;31(12):3342-3359 [PMID: 35510794]
  49. Probiotics Antimicrob Proteins. 2020 Sep;12(3):1126-1138 [PMID: 31942681]
  50. ISME J. 2018 Dec;12(12):2883-2893 [PMID: 30061706]
  51. mSystems. 2019 Nov 12;4(6): [PMID: 31719140]
  52. Ecol Evol. 2019 May 09;9(11):6508-6523 [PMID: 31236240]
  53. Proc Nutr Soc. 2015 Feb;74(1):13-22 [PMID: 25268552]
  54. Appl Microbiol Biotechnol. 2021 Feb;105(4):1407-1419 [PMID: 33512572]
  55. Front Microbiol. 2018 May 11;9:914 [PMID: 29867825]
  56. Nat Commun. 2017 Dec 5;8(1):1784 [PMID: 29209090]
  57. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  58. Conserv Physiol. 2022 Apr 25;10(1):coac028 [PMID: 35492418]
  59. PeerJ. 2020 May 12;8:e9003 [PMID: 32435532]

MeSH Term

Animals
Gastrointestinal Microbiome
Chiroptera
RNA, Ribosomal, 16S
Haptoglobins
Bacteria
Immunity

Chemicals

RNA, Ribosomal, 16S
Haptoglobins

Word Cloud

Created with Highcharts 10.0.0GMimmunebatresponsehealthbatschallengegutdynamicsdiseasespecieshaptoglobinresiliencestudieslinkwildChiropteracopefruitinflammatoryusingantigenshiftcompositioncorrelatedconcentrationbacterialmicrobiotaIntroduction:InteractionsmicrobiomesysteminfluencehostfitnessHoweverinvestigatedBatsMammalia:exceptionalabilityintracellularpathogensuniqueadaptedpoweredflightYetcontributionespeciallyimmunityaffectedremainsunknownMethods:examinedEgyptianbats'provokedlipopolysaccharidesLPSendotoxinGram-negativebacteriameasuredmarkermajoracutephaseproteinanalyzedanalswabscontrolchallengedhigh-throughput16SrRNAsequencing24h48hpostResults:revealedcausessignificantlystronglysamplingtimeElevensequencesninefoundpotentialpredictorsstrengthimplicitinfectionseveritynotablyshowedhighregainingcolony'sgrouprapidlyresumedforagingsocialactivitiesConclusion:resultsdemonstratetightchangesemphasizeimportanceintegratingmicrobialecologyecoimmunologicalmayprovideadaptiveadvantageinfectionsmaintaincolonysicknesshealth:association16sRNASILVAdatabaseWeissellaecoimmunologyhost-pathogeninteractions

Similar Articles

Cited By