Optimization of bamboo-based photothermal interfacial solar evaporator for enhancing water purification.

Thirugnanasambantham Arunkumar, Hyeong Woo Lim, Higgins M Wilson, Younghoon Suh, Sang Joon Lee
Author Information
  1. Thirugnanasambantham Arunkumar: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang-37673, Gyeongbuk, Republic of Korea.
  2. Hyeong Woo Lim: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang-37673, Gyeongbuk, Republic of Korea.
  3. Higgins M Wilson: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang-37673, Gyeongbuk, Republic of Korea.
  4. Younghoon Suh: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang-37673, Gyeongbuk, Republic of Korea.
  5. Sang Joon Lee: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang-37673, Gyeongbuk, Republic of Korea. sjlee@postech.ac.kr.

Abstract

Although solar desalination is a promising approach for obtaining freshwater, its practical application encounters challenges in achieving efficient photothermal evaporation. Recent research has focused on novel configurations of solar absorbers with unique structural features that can minimize heat loss. High-efficiency interfacial solar steam generation (SSG) can be achieved by optimizing the design of the absorber to harness incident heat energy on the top interfacial surface and ensuring a continuous water supply through microchannels. Artificially nanostructured absorbers might have high solar absorptivity and thermal stability. However, the manufacturing of absorbers is expensive, and the constituting materials are typically non-biodegradable. The unique structural configuration of natural plant-based solar absorbers provides a major breakthrough in SSG. Bamboo, as a natural biomass, possesses exceptional mechanical strength and excellent water transport through vertically oriented microchannels. This study aimed to enhance the performance of SSG with a carbonized Bamboo-based solar absorber (CBSA). To achieve this goal, we optimized the carbonization thickness of the absorber by varying the carbonization time. Furthermore, the height of the CBSA was varied from 5 to 45 mm to determine the optimal height for effective solar evaporation. Accordingly, the highest evaporation rate of 3.09 kg m h was achieved for the CBSA height of 10 mm and top-layer carbonization thickness of 5 mm. The cost-effectiveness, simple fabrication, and superior desalination performance of the CBSA demonstrate a strong potential for practical applications.

Keywords

References

  1. Achiou B, Elomari H, Bouazizi A et al (2017) Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination. Desalination 419:181–187. https://doi.org/10.1016/j.desal.2017.06.014 [DOI: 10.1016/j.desal.2017.06.014]
  2. Bian Y, Du Q, Tang K et al (2019) Carbonized bamboos as excellent 3D solar vapor-generation devices. Adv Mater Technol 4:1–7. https://doi.org/10.1002/admt.201800593 [DOI: 10.1002/admt.201800593]
  3. Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic – aerobic treatment of industrial and municipal wastewater. 155:1–18. https://doi.org/10.1016/j.cej.2009.06.041
  4. Du X, Yang W, Zhao J et al (2019) Peroxymonosulfate-assisted electrolytic oxidation/coagulation combined with ceramic ultrafiltration for surface water treatment: membrane fouling and sulfamethazine degradation. J Clean Prod 235:779–788. https://doi.org/10.1016/j.jclepro.2019.07.035 [DOI: 10.1016/j.jclepro.2019.07.035]
  5. Elsayed E, Anderson P, AL-Dadah R, et al (2019) MIL-101(Cr)/calcium chloride composites for enhanced adsorption cooling and water desalination. J Solid State Chem 277:123–132. https://doi.org/10.1016/j.jssc.2019.05.026 [DOI: 10.1016/j.jssc.2019.05.026]
  6. Frisbie SH, Mitchell EJ, Sarkar B (2013) World Health Organization increases its drinking-water guideline for uranium. Environ Sci: Processes Impacts 15:1817–1823. https://doi.org/10.1039/c3em00381g [DOI: 10.1039/c3em00381g]
  7. Gao L, Zhang X, Fan L et al (2021) Algae-based approach for desalination: an emerging energy-passive and environmentally friendly desalination technology. ACS Sustain Chem Eng 9:8663–8678. https://doi.org/10.1021/acssuschemeng.1c00603 [DOI: 10.1021/acssuschemeng.1c00603]
  8. Ghosh P, Samanta AN, Ray S (2011) Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 266:213–217. https://doi.org/10.1016/j.desal.2010.08.029 [DOI: 10.1016/j.desal.2010.08.029]
  9. Gong B, Yang H, Wu S et al (2021) Multifunctional solar bamboo straw: multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage. Carbon N Y 171:359–367. https://doi.org/10.1016/j.carbon.2020.09.033 [DOI: 10.1016/j.carbon.2020.09.033]
  10. Hacıfazlıoğlu MC, Parlar İ, Pek T, Kabay N (2019) Evaluation of chemical cleaning to control fouling on nanofiltration and reverse osmosis membranes after desalination of MBR effluent. Desalination 466:44–51. https://doi.org/10.1016/j.desal.2019.05.003 [DOI: 10.1016/j.desal.2019.05.003]
  11. Hu CS, Li HJ, Wang JY et al (2019) Mushroom-like rGO/PAM hybrid cryogels with efficient solar-heating water evaporation. ACS Appl Energy Mater 2:7554–7563. https://doi.org/10.1021/acsaem.9b01530 [DOI: 10.1021/acsaem.9b01530]
  12. Ismail IS, Rashidi NA, Yusup S (2022) Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environ Sci Pollut Res 29:12434–12440. https://doi.org/10.1007/s11356-021-15030-x [DOI: 10.1007/s11356-021-15030-x]
  13. Li J, Zheng H, Sun Q et al (2015) Fabrication of superhydrophobic bamboo timber based on an anatase TiO2 film for acid rain protection and flame retardancy. RSC Adv 5:62265–62272. https://doi.org/10.1039/c5ra09643j [DOI: 10.1039/c5ra09643j]
  14. Liu C, Hong K, Sun X et al (2020a) An “antifouling” porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. J Mater Chem A Mater 8:12323–12333. https://doi.org/10.1039/d0ta03872e [DOI: 10.1039/d0ta03872e]
  15. Liu J, Yao J, Yuan Y et al (2020b) Surface-carbonized bamboos with multilevel functional biostructures deliver high photothermal water evaporation performance. Adv Sustain Syst 4. https://doi.org/10.1002/adsu.202000126
  16. Liu Q, Xu G-R, Das R (2019) Inorganic scaling in reverse osmosis (RO) desalination: mechanisms, monitoring, and inhibition strategies. Desalination 468:114065. https://doi.org/10.1016/j.desal.2019.07.005 [DOI: 10.1016/j.desal.2019.07.005]
  17. Li W, Tian X, Li X et al (2022) An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. J Colloid Interface Sci 606:748–757. https://doi.org/10.1016/j.jcis.2021.08.043 [DOI: 10.1016/j.jcis.2021.08.043]
  18. Li Z, Wang C, Lei T et al (2019) Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity. Adv Sustain Syst 3:1–10. https://doi.org/10.1002/adsu.201800144 [DOI: 10.1002/adsu.201800144]
  19. Long Y, Huang S, Yi H et al (2019) Carrot-inspired solar thermal evaporator. J Mater Chem A Mater 7:26911–26916. https://doi.org/10.1039/c9ta08754k [DOI: 10.1039/c9ta08754k]
  20. Lundqvist J, Andersson A, Johannisson A et al (2019) Innovative drinking water treatment techniques reduce the disinfection-induced oxidative stress and genotoxic activity. Water Res 155:182–192. https://doi.org/10.1016/j.watres.2019.02.052 [DOI: 10.1016/j.watres.2019.02.052]
  21. Mohan N, Dash SP, Mary Boby N, Shetty D (2022) Study of bamboo as a building material – construction & preservation techniques and its sustainability. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.12.263 [DOI: 10.1016/j.matpr.2021.12.263]
  22. Orozco-Hernández L, Gómez-Oliván LM, Elizalde-Velázquez A et al (2019) 17-β-Estradiol: significant reduction of its toxicity in water treated by photocatalysis. Sci Total Environ 669:955–963. https://doi.org/10.1016/j.scitotenv.2019.03.190 [DOI: 10.1016/j.scitotenv.2019.03.190]
  23. Pooi CK, Ng HY (2018) Review of low-cost point-of-use water treatment systems for developing communities. NPJ Clean Water 1. https://doi.org/10.1038/s41545-018-0011-0
  24. Ramírez-Estrada A, Mena-Cervantes VY, Fuentes-García J et al (2018) Cr(III) removal from synthetic and real tanning effluents using an electro-precipitation method. J Environ Chem Eng 6:1219–1225. https://doi.org/10.1016/j.jece.2018.01.038 [DOI: 10.1016/j.jece.2018.01.038]
  25. Sheng C, Yang N, Yan Y et al (2020) Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation. Appl Therm Eng 167:114712. https://doi.org/10.1016/j.applthermaleng.2019.114712 [DOI: 10.1016/j.applthermaleng.2019.114712]
  26. Singh SC, ElKabbash M, Li Z et al (2020) Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat Sustain 3:938–946. https://doi.org/10.1038/s41893-020-0566-x [DOI: 10.1038/s41893-020-0566-x]
  27. Tabassum S (2019) A combined treatment method of novel Mass Bio System and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies. Chem Eng J 378:122217. https://doi.org/10.1016/j.cej.2019.122217 [DOI: 10.1016/j.cej.2019.122217]
  28. Chandran V, Sujith Lal SKB (2022) Polymer modified banana pseudo stem-based interfacial solar-driven evaporation system. J Bionic Eng. https://doi.org/10.1007/s42235-021-00149-x [DOI: 10.1007/s42235-021-00149-x]
  29. Wang CF, Wu CL, Kuo SW et al (2020) Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-69778-2 [DOI: 10.1038/s41598-020-69778-2]
  30. Wang Y, Wu X, Wu P et al (2021) Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci Bull (beijing). https://doi.org/10.1016/j.scib.2021.09.018 [DOI: 10.1016/j.scib.2021.09.018]
  31. Wani TA, Garg P, Bera A (2021) An environmental pollutant to an efficient solar vapor generator: an eco-friendly method for freshwater production. Mater Adv 2:3856–3861. https://doi.org/10.1039/d1ma00361e [DOI: 10.1039/d1ma00361e]
  32. Wei C, Zhang X, Ma S et al (2021a) Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification. Chem Eng J 425. https://doi.org/10.1016/j.cej.2021.130118
  33. Wei H, Gao B, Ren J et al (2018) Coagulation/flocculation in dewatering of sludge: a review. Water Res 143:608–631. https://doi.org/10.1016/j.watres.2018.07.029 [DOI: 10.1016/j.watres.2018.07.029]
  34. Wei Z, Cai C, Huang Y et al (2021b) Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation. Nano Energy 86. https://doi.org/10.1016/j.nanoen.2021.106138
  35. Wicks M, Millar GJ, Altaee A (2019) Process simulation of ion exchange desalination treatment of coal seam gas associated water. J Water Process Eng 27:89–98. https://doi.org/10.1016/j.jwpe.2018.11.020 [DOI: 10.1016/j.jwpe.2018.11.020]
  36. Woo SY, Lee HS, Ji H et al (2019) Silica gel-based adsorption cooling cum desalination system: focus on brine salinity, operating pressure, and its effect on performance. Desalination 467:136–146. https://doi.org/10.1016/j.desal.2019.06.016 [DOI: 10.1016/j.desal.2019.06.016]
  37. Xiong J, Yi J, Peng S et al (2022) Plant transpiration-inspired environmental energy-enhanced solar evaporator fabricated by polypyrrole decorated polyester fiber bundles for efficient water purification. J Clean Prod 379. https://doi.org/10.1016/j.jclepro.2022.134683
  38. Xu F (2018) Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere 212:662–677. https://doi.org/10.1016/j.chemosphere.2018.08.108 [DOI: 10.1016/j.chemosphere.2018.08.108]
  39. Xu N, Hu X, Xu W et al (2017) Mushrooms as efficient solar steam-generation devices. Adv Mater 29. https://doi.org/10.1002/adma.201606762
  40. Zhang N, Huang Z, Yang N et al (2020) Nanofiltration membrane via EGCG-PEI co-deposition followed by cross-linking on microporous PTFE substrates for desalination. Sep Purif Technol 232:115964. https://doi.org/10.1016/j.seppur.2019.115964 [DOI: 10.1016/j.seppur.2019.115964]
  41. Zhang W, Zhang W, Chen X et al (2020b) A salt-rejecting anisotropic structure for efficient solar desalination: via heat-mass flux decoupling. J Mater Chem A Mater 8:12089–12096. https://doi.org/10.1039/d0ta04326e [DOI: 10.1039/d0ta04326e]
  42. Zhu D, Zhou Q (2019) Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag 12:100255. https://doi.org/10.1016/j.enmm.2019.100255 [DOI: 10.1016/j.enmm.2019.100255]
  43. Zhu M, Yu J, Ma C et al (2019) Carbonized daikon for high efficient solar steam generation. Sol Energy Mater Sol Cells 191:83–90. https://doi.org/10.1016/j.solmat.2018.11.015 [DOI: 10.1016/j.solmat.2018.11.015]

Grants

  1. 2022H1D3A2A01096489/National Research Foundation of Korea

MeSH Term

Water Purification
Water Supply
Biological Transport
Biomass
Commerce
Steam

Chemicals

Steam

Word Cloud

Created with Highcharts 10.0.0solarabsorbersCBSAheightevaporationinterfacialSSGabsorberwatercarbonizationdesalinationpracticalphotothermaluniquestructuralcanheatsteamgenerationachievedmicrochannelsnaturalperformancebamboo-basedthicknessAlthoughpromisingapproachobtainingfreshwaterapplicationencounterschallengesachievingefficientRecentresearchfocusednovelconfigurationsfeaturesminimizelossHigh-efficiencyoptimizingdesignharnessincidentenergytopsurfaceensuringcontinuoussupplyArtificiallynanostructuredmighthighabsorptivitythermalstabilityHowevermanufacturingexpensiveconstitutingmaterialstypicallynon-biodegradableconfigurationplant-basedprovidesmajorbreakthroughBamboobiomasspossessesexceptionalmechanicalstrengthexcellenttransportverticallyorientedstudyaimedenhancecarbonizedachievegoaloptimizedvaryingtimeFurthermorevaried545 mmdetermineoptimaleffectiveAccordinglyhighestrate309 kg m h10 mmtop-layer5 mmcost-effectivenesssimplefabricationsuperiordemonstratestrongpotentialapplicationsOptimizationevaporatorenhancingpurificationCarbonizedbambooDesalinationOptimalPhotothermalSolar

Similar Articles

Cited By (1)