Employing pigs to decipher the host genetic effect on gut microbiome: advantages, challenges, and perspectives.

Lusheng Huang, Congying Chen
Author Information
  1. Lusheng Huang: National Key Laboratory of Pig Genetic Improvement, Jiangxi Agricultural University, Nanchang, China. ORCID
  2. Congying Chen: National Key Laboratory of Pig Genetic Improvement, Jiangxi Agricultural University, Nanchang, China. ORCID

Abstract

The gut microbiota is a complex and diverse ecosystem comprised of trillions of microbes and plays an essential role in host's immunity, metabolism, and even behaviors. Environmental and host factors drive the huge variations in the gut microbiome among individuals. Here, we summarize accumulated evidences about host genetic effect on the gut microbial compositions with emphases on the correlation between host genetic kinship and the similarity of microbial compositions, heritability estimates of microbial taxa, and identification of genomic variants associated with the gut microbiome in pigs as well as in humans. A proportion of bacterial taxa have been reported to be heritable, and numerous variants associated with the diversity of the gut microbiota or specific taxa have been identified in both humans and pigs. LCT and ABO gene have been replicated in multiple studies, and its mechanism have been elucidated clearly. We also discuss the main advantages and challenges using pigs as experimental animals in exploring host genetic effect on the gut microbial composition and provided our insights on the perspectives in this area.

Keywords

References

  1. PLoS One. 2019 Aug 28;14(8):e0220843 [PMID: 31461453]
  2. Trends Microbiol. 1996 Nov;4(11):430-5 [PMID: 8950812]
  3. Front Genet. 2019 Jul 05;10:638 [PMID: 31338107]
  4. BMC Microbiol. 2015 Mar 21;15:66 [PMID: 25880246]
  5. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  6. Microbiome. 2019 Jun 13;7(1):92 [PMID: 31196178]
  7. Nat Biotechnol. 2016 Sep;34(9):942-9 [PMID: 27454739]
  8. Nat Rev Immunol. 2014 Mar;14(3):141-53 [PMID: 24566914]
  9. Nutrients. 2022 Jan 20;14(3): [PMID: 35276812]
  10. Front Microbiol. 2019 Jun 18;10:1359 [PMID: 31275280]
  11. Cell Host Microbe. 2016 May 11;19(5):731-43 [PMID: 27173935]
  12. Antioxidants (Basel). 2022 Aug 01;11(8): [PMID: 36009229]
  13. Nature. 2022 Jun;606(7913):358-367 [PMID: 35477154]
  14. Am J Hum Genet. 2006 Feb;78(2):339-44 [PMID: 16400612]
  15. Nat Genet. 2021 Feb;53(2):156-165 [PMID: 33462485]
  16. Gut. 2021 Mar;70(3):595-605 [PMID: 33051190]
  17. Science. 2015 Sep 11;349(6253):1172-3 [PMID: 26359393]
  18. Front Genet. 2017 Aug 29;8:111 [PMID: 28912798]
  19. ISME J. 2008 Jul;2(7):716-27 [PMID: 18401439]
  20. Mamm Genome. 2014 Dec;25(11-12):583-99 [PMID: 25159725]
  21. Nutrients. 2011 Jan;3(1):118-34 [PMID: 22254078]
  22. Genetics. 2017 Jul;206(3):1637-1644 [PMID: 28468904]
  23. Nat Commun. 2021 Feb 17;12(1):1106 [PMID: 33597514]
  24. Nat Rev Genet. 2006 Jul;7(7):510-23 [PMID: 16778835]
  25. Anim Nutr. 2017 Mar;3(1):1-6 [PMID: 29767055]
  26. J Appl Microbiol. 2011 Dec;111(6):1297-309 [PMID: 21933312]
  27. Nat Genet. 2016 Nov;48(11):1396-1406 [PMID: 27723756]
  28. Sci Rep. 2018 Aug 24;8(1):12727 [PMID: 30143657]
  29. Cell Host Microbe. 2022 Oct 12;30(10):1464-1480.e6 [PMID: 36099924]
  30. Hum Genet. 2012 Oct;131(10):1555-63 [PMID: 22714655]
  31. Front Microbiol. 2022 Jul 04;13:838164 [PMID: 35859746]
  32. Genome Res. 2015 Oct;25(10):1558-69 [PMID: 26260972]
  33. PLoS One. 2015 Nov 03;10(11):e0140301 [PMID: 26528553]
  34. Nat Rev Genet. 2008 Apr;9(4):255-66 [PMID: 18319743]
  35. Front Immunol. 2021 Oct 21;12:717723 [PMID: 34745096]
  36. Mol Cell. 2016 Dec 1;64(5):982-992 [PMID: 27889451]
  37. Genome Biol. 2015 Sep 15;16:191 [PMID: 26374288]
  38. PLoS Biol. 2013;11(8):e1001631 [PMID: 23976878]
  39. Nat Commun. 2020 Dec 15;11(1):6389 [PMID: 33319778]
  40. Cell. 2014 Nov 6;159(4):789-99 [PMID: 25417156]
  41. Poult Sci. 2019 Sep 1;98(9):4084-4093 [PMID: 31330021]
  42. Animal. 2019 Feb;13(2):262-272 [PMID: 29954466]
  43. Science. 2013 Mar 1;339(6123):1084-8 [PMID: 23328391]
  44. Nature. 2016 Jul 06;535(7610):65-74 [PMID: 27383981]
  45. J Biol Chem. 2019 Dec 6;294(49):18586-18599 [PMID: 31636122]
  46. Virology. 2022 Feb;567:26-33 [PMID: 34952414]
  47. PLoS Biol. 2022 Aug 23;20(8):e3001758 [PMID: 35998206]
  48. Mamm Genome. 2021 Aug;32(4):263-281 [PMID: 34159422]
  49. Animal Model Exp Med. 2022 Dec;5(4):311-322 [PMID: 35808814]
  50. Nat Genet. 2016 Nov;48(11):1413-1417 [PMID: 27694960]
  51. Nat Genet. 2022 Feb;54(2):143-151 [PMID: 35115690]
  52. ISME J. 2020 Jan;14(1):302-317 [PMID: 31624342]
  53. Gut Microbes. 2019;10(2):216-227 [PMID: 30118385]
  54. Immunity. 2013 Aug 22;39(2):400-12 [PMID: 23973225]
  55. Dig Liver Dis. 2017 Mar;49(3):261-267 [PMID: 27939319]
  56. BMC Proc. 2011 Nov 29;5 Suppl 9:S83 [PMID: 22373393]
  57. Microb Ecol. 2019 Aug;78(2):517-527 [PMID: 30627762]
  58. Front Microbiol. 2018 Jan 26;9:48 [PMID: 29472900]
  59. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18933-8 [PMID: 20937875]
  60. Environ Microbiol. 2016 May;18(5):1566-77 [PMID: 26940746]
  61. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 [PMID: 20679230]
  62. Nature. 2012 Sep 13;489(7415):220-30 [PMID: 22972295]
  63. Nature. 2022 Apr;604(7907):732-739 [PMID: 35418674]
  64. Gene. 2018 Jan 15;640:1-5 [PMID: 28966132]
  65. Trends Microbiol. 2017 Oct;25(10):851-873 [PMID: 28602521]
  66. Anim Microbiome. 2021 Jul 28;3(1):52 [PMID: 34321110]
  67. ISME J. 2021 Aug;15(8):2306-2321 [PMID: 33649551]
  68. Nature. 2012 Sep 13;489(7415):242-9 [PMID: 22972297]
  69. J Inflamm Res. 2022 Apr 24;15:2631-2647 [PMID: 35494313]
  70. Blood. 2001 May 15;97(10):3308-10 [PMID: 11342465]
  71. BMC Vet Res. 2019 May 24;15(1):172 [PMID: 31126262]
  72. Sci Rep. 2016 Jun 03;6:27427 [PMID: 27255518]
  73. ISME J. 2012 Nov;6(11):2033-44 [PMID: 22695862]
  74. Nat Commun. 2015 Feb 18;6:6312 [PMID: 25692519]
  75. Nat Genet. 2016 Nov;48(11):1407-1412 [PMID: 27694959]
  76. Animals (Basel). 2021 Sep 29;11(10): [PMID: 34679867]
  77. Microbiol Spectr. 2022 Jun 29;10(3):e0068821 [PMID: 35583332]
  78. Sci Rep. 2020 Jun 23;10(1):10134 [PMID: 32576852]
  79. Gut. 2017 Jun;66(6):1031-1038 [PMID: 27053630]
  80. Front Microbiol. 2018 Oct 31;9:2626 [PMID: 30429843]
  81. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1691-6 [PMID: 22307632]
  82. mSystems. 2017 May 23;2(3): [PMID: 28567446]
  83. Nat Methods. 2022 Apr;19(4):429-440 [PMID: 35396482]
  84. Nat Biotechnol. 2014 Aug;32(8):834-41 [PMID: 24997786]
  85. ISME J. 2014 Feb;8(2):295-308 [PMID: 24030595]
  86. Environ Microbiol. 2014 Sep;16(9):2891-904 [PMID: 24033881]
  87. Gut Microbes. 2016;7(2):178-84 [PMID: 26939746]
  88. ISME J. 2014 Aug;8(8):1566-76 [PMID: 24522263]
  89. Front Microbiol. 2022 Feb 22;13:843045 [PMID: 35273589]
  90. Microbiome. 2019 Jul 30;7(1):109 [PMID: 31362781]
  91. DNA Res. 2018 Jan 19;: [PMID: 29365082]
  92. Front Nutr. 2022 Jan 28;8:806646 [PMID: 35155525]
  93. J Appl Microbiol. 2022 Jun;132(6):4466-4475 [PMID: 35338545]
  94. Maturitas. 2017 Sep;103:45-53 [PMID: 28778332]
  95. Science. 2005 Jun 10;308(5728):1635-8 [PMID: 15831718]
  96. Cell. 2016 Jan 28;164(3):337-40 [PMID: 26824647]
  97. Nat Microbiol. 2016 Sep 19;1:16161 [PMID: 27643971]
  98. Nat Microbiol. 2020 Sep;5(9):1079-1087 [PMID: 32572223]
  99. Horm Behav. 2018 Mar;99:41-49 [PMID: 29427583]
  100. Nat Genet. 2022 Feb;54(2):134-142 [PMID: 35115689]
  101. Anim Genet. 2011 Jun;42(3):325-8 [PMID: 21554350]
  102. Appl Environ Microbiol. 2015 Nov 13;82(2):671-9 [PMID: 26567306]
  103. Nature. 2018 Mar 8;555(7695):210-215 [PMID: 29489753]
  104. Curr Opin Microbiol. 2022 Apr;66:79-85 [PMID: 35121284]
  105. Microbiome. 2021 Feb 21;9(1):52 [PMID: 33612109]

MeSH Term

Humans
Swine
Animals
Gastrointestinal Microbiome
Ecosystem
Bacteria
RNA, Ribosomal, 16S

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0guthostpigsgeneticmicrobialmicrobiomeeffecttaxamicrobiotacompositionsheritabilityestimatesvariantsassociatedhumansadvantageschallengesperspectivescomplexdiverseecosystemcomprisedtrillionsmicrobesplaysessentialrolehost'simmunitymetabolismevenbehaviorsEnvironmentalfactorsdrivehugevariationsamongindividualssummarizeaccumulatedevidencesemphasescorrelationkinshipsimilarityidentificationgenomicwellproportionbacterialreportedheritablenumerousdiversityspecificidentifiedLCTABOgenereplicatedmultiplestudiesmechanismelucidatedclearlyalsodiscussmainusingexperimentalanimalsexploringcompositionprovidedinsightsareaEmployingdeciphermicrobiome:Gutgenome-wideassociationstudygenetics

Similar Articles

Cited By