Interactions between curcumin and human salt-induced kinase 3 elucidated from computational tools and experimental methods.

Mingsong Shi, Yan Zhou, Haoche Wei, Xinyu Zhang, Meng Du, Yanting Zhou, Yuan Yin, Xinghui Li, Xinyi Tang, Liang Sun, Dingguo Xu, Xiaoan Li
Author Information
  1. Mingsong Shi: NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China.
  2. Yan Zhou: NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China.
  3. Haoche Wei: State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  4. Xinyu Zhang: West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
  5. Meng Du: College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, China.
  6. Yanting Zhou: Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
  7. Yuan Yin: NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China.
  8. Xinghui Li: West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
  9. Xinyi Tang: West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
  10. Liang Sun: Shenzhen Shuli Tech Co., Ltd, Shenzhen, Guangdong, China.
  11. Dingguo Xu: College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, China.
  12. Xiaoan Li: NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China.

Abstract

Natural products are widely used for treating mitochondrial dysfunction-related diseases and cancers. Curcumin, a well-known natural product, can be potentially used to treat cancer. Human salt-induced kinase 3 (SIK3) is one of the target proteins for curcumin. However, the interactions between curcumin and human SIK3 have not yet been investigated in detail. In this study, we studied the binding models for the interactions between curcumin and human SIK3 using computational tools such as homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations. The open activity loop conformation of SIK3 with the ketoenol form of curcumin was the optimal binding model. The I72, V80, A93, Y144, A145, and L195 residues played a key role for curcumin binding with human SIK3. The interactions between curcumin and human SIK3 were also investigated using the kinase assay. Moreover, curcumin exhibited an IC (half-maximal inhibitory concentration) value of 131 nM, and it showed significant antiproliferative activities of 9.62 ± 0.33 µM and 72.37 ± 0.37 µM against the MCF-7 and MDA-MB-23 cell lines, respectively. This study provides detailed information on the binding of curcumin with human SIK3 and may facilitate the design of novel salt-inducible kinases inhibitors.

Keywords

References

  1. J Med Chem. 2019 Feb 28;62(4):2140-2153 [PMID: 30715878]
  2. J Comput Chem. 2010 Jul 15;31(9):1911-8 [PMID: 20082382]
  3. FASEB J. 1995 May;9(8):576-96 [PMID: 7768349]
  4. Chem Biodivers. 2022 Oct;19(10):e202200485 [PMID: 36069208]
  5. Curr Pharm Des. 2019;25(31):3339-3349 [PMID: 31480998]
  6. Free Radic Biol Med. 2010 Mar 1;48(5):713-26 [PMID: 20036734]
  7. Eur J Med Chem. 2017 Jul 7;134:72-85 [PMID: 28399452]
  8. Curr Opin Biotechnol. 2022 Dec;78:102783 [PMID: 36088735]
  9. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  10. Front Pharmacol. 2022 Jul 15;13:925993 [PMID: 35910356]
  11. J Med Chem. 2006 Jun 29;49(13):3826-31 [PMID: 16789739]
  12. Chem Biol Drug Des. 2019 Jan;93(1):12-20 [PMID: 30187647]
  13. J Mol Graph Model. 1999 Feb;17(1):57-61 [PMID: 10660911]
  14. Cell. 1997 Sep 5;90(5):859-69 [PMID: 9298898]
  15. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W368-71 [PMID: 15980491]
  16. J Cell Physiol. 2019 Mar;234(3):2241-2251 [PMID: 30146757]
  17. J Biol Chem. 2006 Sep 15;281(37):27586-99 [PMID: 16803889]
  18. Front Pharmacol. 2022 Oct 06;13:976385 [PMID: 36299886]
  19. Science. 1991 Jul 12;253(5016):164-70 [PMID: 1853201]
  20. Front Pharmacol. 2021 Nov 15;12:772510 [PMID: 34867402]
  21. J Biol Chem. 2019 May 10;294(19):7658-7668 [PMID: 30923129]
  22. FEBS J. 2018 Feb;285(3):467-480 [PMID: 29211348]
  23. Int J Mol Sci. 2019 Jun 30;20(13): [PMID: 31262033]
  24. Biochemistry. 2002 Jul 2;41(26):8528-34 [PMID: 12081504]
  25. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16986-91 [PMID: 23033494]
  26. Trends Endocrinol Metab. 2004 Jan-Feb;15(1):21-6 [PMID: 14693422]
  27. Biochem Biophys Res Commun. 2010 Mar 12;393(3):339-44 [PMID: 20152810]
  28. Cell Rep. 2017 Jun 13;19(11):2177-2184 [PMID: 28614705]
  29. Future Med Chem. 2016 Apr;8(5):545-66 [PMID: 27054816]
  30. Int J Mol Sci. 2022 Nov 04;23(21): [PMID: 36362345]
  31. Nat Commun. 2015 Dec 02;6:8953 [PMID: 26626945]
  32. Yakugaku Zasshi. 2007 Jan;127(1):113-22 [PMID: 17202791]
  33. Phys Chem Chem Phys. 2021 Jun 16;23(23):13216-13227 [PMID: 34086021]
  34. J Chem Theory Comput. 2020 Jan 14;16(1):528-552 [PMID: 31714766]
  35. Annu Rev Biophys. 2019 May 6;48:275-296 [PMID: 30857399]
  36. Pharmacol Res. 2016 Jan;103:26-48 [PMID: 26529477]
  37. Expert Opin Drug Discov. 2018 Jan;13(1):23-37 [PMID: 29139324]
  38. Biomolecules. 2022 Nov 04;12(11): [PMID: 36358986]
  39. Phytochemistry. 1996 Jun;42(3):599-605 [PMID: 8768315]
  40. Biochem Biophys Res Commun. 2018 Jan 1;495(1):1-6 [PMID: 29061304]
  41. J Med Chem. 2017 Jul 27;60(14):6353-6363 [PMID: 28671831]
  42. Obesity (Silver Spring). 2008 Mar;16(3):531-8 [PMID: 18239551]
  43. Front Oncol. 2019 Jan 22;9:18 [PMID: 30723708]
  44. Br J Pharmacol. 2019 Dec;176 Suppl 1:S297-S396 [PMID: 31710714]
  45. Cell Chem Biol. 2021 May 20;28(5):686-698.e7 [PMID: 33497606]
  46. Biochem J. 2006 Mar 15;394(Pt 3):545-55 [PMID: 16396636]
  47. Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):514-21 [PMID: 24531485]
  48. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 [PMID: 9944570]
  49. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  50. Signal Transduct Target Ther. 2020 Aug 12;5(1):150 [PMID: 32788639]
  51. Expert Opin Ther Targets. 2016;20(4):477-85 [PMID: 26549013]
  52. 3 Biotech. 2021 Dec;11(12):506 [PMID: 34840927]
  53. Curr Protein Pept Sci. 2007 Aug;8(4):312-28 [PMID: 17696866]
  54. Int J Mol Sci. 2019 Sep 04;20(18): [PMID: 31487867]
  55. Phys Chem Chem Phys. 2019 Feb 27;21(9):5049-5058 [PMID: 30762035]
  56. Front Pharmacol. 2021 Jan 14;11:624429 [PMID: 33519490]
  57. J Cell Sci. 2005 Dec 1;118(Pt 23):5661-73 [PMID: 16306228]
  58. Drug Discov Today. 2009 Jul;14(13-14):676-83 [PMID: 19422931]
  59. Curr Top Med Chem. 2011;11(12):1528-34 [PMID: 21510834]
  60. ACS Omega. 2022 Aug 31;7(36):32442-32456 [PMID: 36119979]
  61. J Biol Chem. 2022 Aug;298(8):102247 [PMID: 35830914]
  62. Cancers (Basel). 2019 Dec 18;12(1): [PMID: 31861339]
  63. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8155-8160 [PMID: 29987021]
  64. N Biotechnol. 2015 Jan 25;32(1):54-64 [PMID: 25224922]
  65. J Med Chem. 2019 Jul 25;62(14):6540-6560 [PMID: 31199640]
  66. Mol Cell Endocrinol. 2004 Mar 31;217(1-2):109-12 [PMID: 15134808]
  67. Cureus. 2022 Mar 3;14(3):e22825 [PMID: 35399416]
  68. J Biomol Struct Dyn. 2015;33(11):2491-510 [PMID: 25617117]
  69. Phys Chem Chem Phys. 2017 Aug 23;19(33):22444-22453 [PMID: 28808717]
  70. J Med Chem. 2020 Oct 22;63(20):11786-11800 [PMID: 32996316]
  71. Int J Mol Sci. 2019 Oct 30;20(21): [PMID: 31671637]
  72. Yakugaku Zasshi. 2018;138(3):347-351 [PMID: 29503427]
  73. Trends Endocrinol Metab. 2018 Oct;29(10):723-735 [PMID: 30150136]
  74. Biomed Pharmacother. 2022 May;149:112893 [PMID: 35366532]
  75. Expert Opin Drug Discov. 2015;10(11):1189-200 [PMID: 26313123]
  76. Mol Pharm. 2007 Nov-Dec;4(6):807-18 [PMID: 17999464]
  77. Expert Opin Drug Discov. 2015 May;10(5):449-61 [PMID: 25835573]
  78. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 [PMID: 27899622]
  79. Comput Biol Med. 2022 Jun;145:105412 [PMID: 35344866]
  80. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 [PMID: 30395287]
  81. SLAS Discov. 2020 Feb;25(2):215-222 [PMID: 31849250]
  82. Mini Rev Med Chem. 2004 Sep;4(7):793-804 [PMID: 15379646]
  83. Structure. 2018 Aug 7;26(8):1137-1143.e3 [PMID: 30099988]
  84. SLAS Discov. 2017 Dec;22(10):1193-1202 [PMID: 28692323]
  85. J Chem Inf Model. 2018 Aug 27;58(8):1473-1482 [PMID: 29975531]
  86. J Comput Chem. 2018 Sep 30;39(25):2110-2117 [PMID: 30368859]
  87. Turk J Pharm Sci. 2020 Aug;17(4):417-423 [PMID: 32939138]
  88. Curr Med Chem. 2016;23(34):3909-3924 [PMID: 27237821]
  89. Molecules. 2021 Jul 13;26(14): [PMID: 34299525]
  90. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6818-6827 [PMID: 30867294]
  91. Chem Commun (Camb). 2011 May 7;47(17):5013-5 [PMID: 21431190]
  92. J Chem Inf Model. 2015 Aug 24;55(8):1645-62 [PMID: 26236953]
  93. Anal Biochem. 2018 Jul 1;552:50-59 [PMID: 28711444]
  94. Curr Drug Targets. 2017;18(5):592-604 [PMID: 26302806]
  95. Trends Endocrinol Metab. 2018 Dec;29(12):827-840 [PMID: 30385008]
  96. Curr Med Chem. 2011;18(19):2848-53 [PMID: 21651494]
  97. Front Pharmacol. 2022 Nov 02;13:1051952 [PMID: 36408249]
  98. Clin Cancer Res. 2017 Apr 15;23(8):1945-1954 [PMID: 27678456]
  99. Comput Struct Biotechnol J. 2022 May 23;20:2574-2586 [PMID: 35685353]
  100. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 [PMID: 9900728]
  101. J Med Chem. 2011 Sep 22;54(18):6183-96 [PMID: 21830815]
  102. Front Pharmacol. 2022 Oct 28;13:1058070 [PMID: 36386215]
  103. Trends Pharmacol Sci. 2022 Oct;43(10):806-819 [PMID: 35851157]
  104. Curr Drug Targets. 2019;20(5):501-521 [PMID: 30360733]
  105. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  106. J Food Drug Anal. 2021 Dec 15;29(4):622-637 [PMID: 35649138]
  107. BMC Biol. 2011 Oct 28;9:71 [PMID: 22035460]
  108. Front Chem. 2019 Apr 17;7:237 [PMID: 31058132]
  109. J Med Chem. 2013 Nov 27;56(22):9170-9 [PMID: 24147900]
  110. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 [PMID: 25348405]
  111. Int J Mol Sci. 2019 Aug 29;20(17): [PMID: 31470676]
  112. Curr Top Med Chem. 2018;18(31):2633-2663 [PMID: 30659540]
  113. FASEB J. 2010 Jun;24(6):1637-48 [PMID: 20071654]
  114. Biochim Biophys Acta. 2011 Jun;1807(6):735-45 [PMID: 21453675]
  115. Eur J Med Chem. 2022 Dec 5;243:114748 [PMID: 36170798]
  116. Eur J Med Chem. 2019 Nov 1;181:111512 [PMID: 31404861]
  117. J Med Chem. 2021 Jun 24;64(12):8142-8160 [PMID: 34086472]
  118. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41 [PMID: 22570416]
  119. J Biomol Struct Dyn. 2022 Oct 25;:1-17 [PMID: 36281703]
  120. J Comput Chem. 2014 Jul 5;35(18):1371-87 [PMID: 24854675]
  121. J Comput Chem. 2004 Dec;25(16):1967-78 [PMID: 15470756]
  122. Expert Opin Drug Discov. 2013 Jul;8(7):821-34 [PMID: 23642085]
  123. Biophys J. 2018 May 22;114(10):2271-2278 [PMID: 29606412]
  124. Curr Protein Pept Sci. 2006 Jun;7(3):217-27 [PMID: 16787261]
  125. FEBS J. 2020 May;287(9):1850-1864 [PMID: 31661600]
  126. Nat Struct Mol Biol. 2010 Jan;17(1):130-2 [PMID: 19966800]
  127. Protein Sci. 1993 Sep;2(9):1511-9 [PMID: 8401235]
  128. Curr Med Chem. 2004 Mar;11(6):663-73 [PMID: 15032722]
  129. iScience. 2018 May 25;3:192-207 [PMID: 30428319]
  130. ChemMedChem. 2022 Feb 4;17(3):e202100676 [PMID: 34773680]
  131. Bioorg Med Chem. 2015 Oct 1;23(19):6520-7 [PMID: 26358279]
  132. Bioinformatics. 2011 Feb 1;27(3):343-50 [PMID: 21134891]
  133. Biochemistry. 1990 Nov 6;29(44):10219-25 [PMID: 2271649]
  134. ACS Omega. 2021 Apr 15;6(16):11025-11038 [PMID: 34056256]
  135. Proteins. 2006 Jun 1;63(4):928-38 [PMID: 16493626]
  136. Science. 1995 May 26;268(5214):1144-9 [PMID: 7761829]
  137. J Cell Biochem. 2011 May;112(5):1364-75 [PMID: 21312243]
  138. J Org Chem. 2022 Aug 5;87(15):10309-10318 [PMID: 35895908]

Word Cloud

Created with Highcharts 10.0.0curcuminSIK3bindinghumankinasemolecularsalt-inducedinteractionsused3investigatedstudyusingcomputationaltoolsdockingdynamicsfreeenergymodel±0Naturalproductswidelytreatingmitochondrialdysfunction-relateddiseasescancersCurcuminwell-knownnaturalproductcanpotentiallytreatcancerHumanonetargetproteinsHoweveryetdetailstudiedmodelshomologymodelingsimulationscalculationsopenactivityloopconformationketoenolformoptimalI72V80A93Y144A145L195residuesplayedkeyrolealsoassayMoreoverexhibitedIChalf-maximalinhibitoryconcentrationvalue131 nMshowedsignificantantiproliferativeactivities96233 µM723737 µMMCF-7MDA-MB-23celllinesrespectivelyprovidesdetailedinformationmayfacilitatedesignnovelsalt-induciblekinasesinhibitorsInteractionselucidatedexperimentalmethodssimulation

Similar Articles

Cited By