Exploration of the COVID-19 pandemic at the neighborhood level in an intra-urban setting.

Tillman Schmitz, Tobia Lakes, Georgianna Manafa, Christoph Lambio, Jeffrey Butler, Alexandra Roth, Nicolai Savaskan
Author Information
  1. Tillman Schmitz: Applied Geoinformation Science, Geography Department, Humboldt University Berlin, Berlin, Germany.
  2. Tobia Lakes: Applied Geoinformation Science, Geography Department, Humboldt University Berlin, Berlin, Germany.
  3. Georgianna Manafa: Applied Geoinformation Science, Geography Department, Humboldt University Berlin, Berlin, Germany.
  4. Christoph Lambio: Applied Geoinformation Science, Geography Department, Humboldt University Berlin, Berlin, Germany.
  5. Jeffrey Butler: Applied Geoinformation Science, Geography Department, Humboldt University Berlin, Berlin, Germany.
  6. Alexandra Roth: Department of Public Health Neukölln, District Office Neukölln, Berlin, Germany.
  7. Nicolai Savaskan: Department of Public Health Neukölln, District Office Neukölln, Berlin, Germany.

Abstract

The COVID-19 pandemic represents a worldwide threat to health. Since its onset in 2019, the pandemic has proceeded in different phases, which have been shaped by a complex set of influencing factors, including public health and social measures, the emergence of new virus variants, and seasonality. Understanding the development of COVID-19 incidence and its spatiotemporal patterns at a neighborhood level is crucial for local health authorities to identify high-risk areas and develop tailored mitigation strategies. However, analyses at the neighborhood level are scarce and mostly limited to specific phases of the pandemic. The aim of this study was to explore the development of COVID-19 incidence and spatiotemporal patterns of incidence at a neighborhood scale in an intra-urban setting over several pandemic phases (March 2020-December 2021). We used reported COVID-19 case data from the health department of the district Berlin-Neukölln, Germany, additional socio-demographic data, and text documents and materials on implemented public health and social measures. We examined incidence over time in the context of the measures and other influencing factors, with a particular focus on age groups. We used incidence maps and spatial scan statistics to reveal changing spatiotemporal patterns. Our results show that several factors may have influenced the development of COVID-19 incidence. In particular, the far-reaching measures for contact reduction showed a substantial impact on incidence in Neukölln. We observed several age group-specific effects: school closures had an effect on incidence in the younger population (< 18 years), whereas the start of the vaccination campaign had an impact primarily on incidence among the elderly (> 65  years). The spatial analysis revealed that high-risk areas were heterogeneously distributed across the district. The location of high-risk areas also changed across the pandemic phases. In this study, existing intra-urban studies were supplemented by our investigation of the course of the pandemic and the underlying processes at a small scale over a long period of time. Our findings provide new insights for public health authorities, community planners, and policymakers about the spatiotemporal development of the COVID-19 pandemic at the neighborhood level. These insights are crucial for guiding decision-makers in implementing mitigation strategies.

Keywords

References

  1. Spat Spatiotemporal Epidemiol. 2022 Jun;41:100493 [PMID: 35691637]
  2. Sci Rep. 2022 May 16;12(1):8048 [PMID: 35577826]
  3. Infection. 2021 Dec;49(6):1331-1335 [PMID: 34669162]
  4. Front Public Health. 2020 Nov 12;8:579190 [PMID: 33282812]
  5. Science. 2021 May 28;372(6545): [PMID: 33906968]
  6. Public Health. 2020 Aug;185:266-269 [PMID: 32707468]
  7. Spat Stat. 2022 Oct;51:100691 [PMID: 35967269]
  8. Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22684-22689 [PMID: 32839315]
  9. Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210119 [PMID: 34802272]
  10. J Trop Pediatr. 2021 Jan 29;67(1): [PMID: 33367907]
  11. PLoS One. 2022 May 17;17(5):e0268538 [PMID: 35580093]
  12. BMC Public Health. 2021 Apr 12;21(1):705 [PMID: 33845798]
  13. PLoS One. 2022 Oct 26;17(10):e0276485 [PMID: 36288363]
  14. Int J Infect Dis. 2020 Sep;98:328-333 [PMID: 32634584]
  15. PLoS One. 2021 Jun 2;16(6):e0252827 [PMID: 34077448]
  16. Nat Commun. 2022 Aug 12;13(1):4738 [PMID: 35961956]
  17. Sci Total Environ. 2021 Sep 15;787:147483 [PMID: 34000545]
  18. Sci Rep. 2022 Mar 17;12(1):4637 [PMID: 35301385]
  19. Spat Spatiotemporal Epidemiol. 2022 Feb;40:100471 [PMID: 35120681]
  20. J Health Monit. 2020 Oct 09;5(Suppl 7):3-17 [PMID: 35146298]
  21. Science. 2021 Mar 26;371(6536): [PMID: 33531384]
  22. Environ Res. 2021 Apr;195:110874 [PMID: 33610582]
  23. Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20200272 [PMID: 34053261]
  24. Front Sociol. 2020 Jun 15;5:47 [PMID: 33869454]
  25. Clin Infect Dis. 2021 Dec 16;73(12):2257-2264 [PMID: 33515252]
  26. MMWR Morb Mortal Wkly Rep. 2020 Oct 30;69(43):1584-1590 [PMID: 33119562]
  27. Science. 2020 Jun 5;368(6495):1063-1065 [PMID: 32439658]
  28. Spat Spatiotemporal Epidemiol. 2020 Aug;34:100354 [PMID: 32807396]
  29. Epidemics. 2020 Dec;33:100424 [PMID: 33285420]
  30. Int J Health Geogr. 2020 Aug 13;19(1):32 [PMID: 32791994]
  31. Euro Surveill. 2021 Oct;26(41): [PMID: 34651577]
  32. Nat Hum Behav. 2021 Apr;5(4):529-538 [PMID: 33686204]
  33. Can J Infect Dis Med Microbiol. 2021 Apr 10;2021:6660930 [PMID: 33936349]
  34. Lancet Digit Health. 2020 Aug;2(8):e393-e394 [PMID: 33328043]
  35. BMC Infect Dis. 2022 Jul 30;22(1):661 [PMID: 35907791]
  36. BMJ. 2021 Nov 17;375:e068302 [PMID: 34789505]
  37. Int J Mol Sci. 2021 Aug 24;22(17): [PMID: 34502041]
  38. Ann Epidemiol. 2022 Jun;70:45-52 [PMID: 35487451]
  39. Can Stud Popul. 2021;48(2-3):201-216 [PMID: 34629702]
  40. Int J Environ Res Public Health. 2021 Feb 27;18(5): [PMID: 33673545]
  41. Int J Infect Dis. 2020 May;94:116-118 [PMID: 32320809]
  42. Nat Hum Behav. 2021 Jul;5(7):947-953 [PMID: 33972767]
  43. Sci Total Environ. 2020 Oct 15;739:140033 [PMID: 32534320]
  44. BMC Med. 2020 Sep 4;18(1):271 [PMID: 32883276]
  45. EClinicalMedicine. 2022 Jul;49:101485 [PMID: 35719293]
  46. Sustain Cities Soc. 2022 Nov;86:104158 [PMID: 36060423]
  47. Cell Rep Med. 2022 Mar 11;3(4):100583 [PMID: 35480627]
  48. Trans GIS. 2021 Dec;25(6):2982-3001 [PMID: 34512106]
  49. Lancet Public Health. 2020 Jul;5(7):e375-e385 [PMID: 32502389]
  50. Front Public Health. 2020 May 29;8:241 [PMID: 32574307]
  51. Nat Med. 2021 Jan;27(1):94-105 [PMID: 33097835]
  52. Int J Environ Res Public Health. 2021 Jan 30;18(3): [PMID: 33573323]
  53. Lancet Reg Health Eur. 2021 Jun 27;6:100151 [PMID: 34557834]
  54. Front Public Health. 2021 Jan 27;8:626090 [PMID: 33614571]
  55. Nat Commun. 2020 Nov 17;11(1):5829 [PMID: 33203887]
  56. PLoS One. 2021 Jul 9;16(7):e0253116 [PMID: 34242239]
  57. J Urban Health. 2020 Aug;97(4):461-470 [PMID: 32691212]
  58. Learn Health Syst. 2020 Jun 28;5(1):e10235 [PMID: 32838037]
  59. Spat Spatiotemporal Epidemiol. 2020 Aug;34:100355 [PMID: 32807400]
  60. JMIRx Med. 2021 Apr 21;2(2):e21269 [PMID: 34032814]
  61. JAMA. 2021 Mar 2;325(9):821-822 [PMID: 33507218]
  62. Int J Health Geogr. 2008 Nov 07;7:57 [PMID: 18992163]
  63. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30104-30106 [PMID: 33172993]
  64. Science. 2021 May 21;372(6544):821-826 [PMID: 33853971]
  65. Int J Equity Health. 2021 Nov 24;20(1):248 [PMID: 34819081]
  66. Euro Surveill. 2021 Dec;26(48): [PMID: 34857068]

MeSH Term

Humans
Aged
Adolescent
COVID-19
Pandemics
Public Health
Germany
Berlin

Word Cloud

Created with Highcharts 10.0.0incidenceCOVID-19pandemichealthspatiotemporalneighborhoodphasespublicmeasuresdevelopmentlevelfactorspatternshigh-riskareasintra-urbanseveralagespatialinfluencingsocialnewcrucialauthoritiesmitigationstrategiesstudyscalesettinguseddatadistricttimeparticulargroupsscanstatisticsimpactanalysisacrossinsightsrepresentsworldwidethreatSinceonset2019proceededdifferentshapedcomplexsetincludingemergencevirusvariantsseasonalityUnderstandinglocalidentifydeveloptailoredHoweveranalysesscarcemostlylimitedspecificaimexploreMarch2020-December2021reportedcasedepartmentBerlin-NeuköllnGermanyadditionalsocio-demographictextdocumentsmaterialsimplementedexaminedcontextfocusmapsrevealchangingresultsshowmayinfluencedfar-reachingcontactreductionshowedsubstantialNeuköllnobservedgroup-specificeffects:schoolclosureseffectyoungerpopulation< 18yearswhereasstartvaccinationcampaignprimarilyamongelderly> 65 yearsrevealedheterogeneouslydistributedlocationalsochangedexistingstudiessupplementedinvestigationcourseunderlyingprocessessmalllongperiodfindingsprovidecommunityplannerspolicymakersguidingdecision-makersimplementingExplorationmeasureurban

Similar Articles

Cited By