Cell annotation using scRNA-seq data: A protein-protein interaction network approach.

Daniela Senra, Nara Guisoni, Luis Diambra
Author Information
  1. Daniela Senra: Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, CONICET, Argentina.
  2. Nara Guisoni: Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, CONICET, Argentina.
  3. Luis Diambra: Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, CONICET, Argentina.

Abstract

Pathway analysis is an important step in the interpretation of single cell transcriptomic data, as it provides powerful information to detect which cellular processes are active in each individual cell. We have recently developed a protein-protein interaction network-based framework to quantify pluripotency associated pathways from scRNA-seq data. On this occasion, we extend this approach to quantify the activity of a pathway associated with any biological process, or even any list of genes. A systems-level characterization of pathway activities across multiple cell types provides a broadly applicable tool for the analysis of pathways in both healthy and disease conditions. Dysregulated cellular functions are a hallmark of a wide spectrum of human disorders, including cancer and autoimmune diseases. Here, we illustrate our method by analyzing various biological processes in healthy and cancer breast samples. Using this approach we found that tumor breast cells, even when they form a single group in the UMAP space, keep diverse biological programs active in a differentiated manner within the cluster.•We implement a protein-protein interaction network-based approach to quantify the activity of different biological processes.•The methodology can be used for cell annotation in scRNA-seq studies and is freely available as R package.

Keywords

References

  1. Comput Biol Med. 2022 Sep;148:105895 [PMID: 35926268]
  2. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  3. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  4. Brief Bioinform. 2017 Sep 1;18(5):735-743 [PMID: 27373736]
  5. Commun Biol. 2019 Aug 9;2:306 [PMID: 31428694]
  6. Nat Commun. 2018 May 23;9(1):2028 [PMID: 29795293]
  7. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  8. Exp Mol Med. 2018 Aug 7;50(8):1-14 [PMID: 30089861]
  9. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  10. Mol Syst Biol. 2019 Jun 19;15(6):e8746 [PMID: 31217225]
  11. Nucleic Acids Res. 2020 Jan 8;48(D1):D489-D497 [PMID: 31647099]
  12. EMBO J. 2021 Jun 1;40(11):e107333 [PMID: 33950524]
  13. Cell. 2021 Jun 10;184(12):3281-3298.e22 [PMID: 34019796]
  14. Bioinformatics. 2009 Nov 15;25(22):3045-6 [PMID: 19744993]
  15. MethodsX. 2022 Jul 01;9:101778 [PMID: 35855951]

Word Cloud

Created with Highcharts 10.0.0cellinteractionscRNA-seqapproachbiologicalprocessesprotein-proteinquantifycancerannotationanalysissingledataprovidescellularactivenetwork-basedassociatedpathwaysactivitypathwayevenhealthybreastCellPathwayimportantstepinterpretationtranscriptomicpowerfulinformationdetectindividualrecentlydevelopedframeworkpluripotencyoccasionextendprocesslistgenessystems-levelcharacterizationactivitiesacrossmultipletypesbroadlyapplicabletooldiseaseconditionsDysregulatedfunctionshallmarkwidespectrumhumandisordersincludingautoimmunediseasesillustratemethodanalyzingvarioussamplesUsingfoundtumorcellsformgroupUMAPspacekeepdiverseprogramsdifferentiatedmannerwithincluster•Weimplementdifferent•ThemethodologycanusedstudiesfreelyavailableRpackageusingdata:networkBiologicalProcessesBreastORIGINS2Protein-proteinnetworks

Similar Articles

Cited By

No available data.