Robust Inversion of Time-Resolved Data via Forward-Optimization in a Trajectory Basis.

Kyle Acheson, Adam Kirrander
Author Information
  1. Kyle Acheson: EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom.
  2. Adam Kirrander: Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom. ORCID

Abstract

An inversion method for time-resolved data from ultrafast experiments is introduced, based on forward-optimization in a trajectory basis. The method is applied to experimental data from X-ray scattering of the photochemical ring-opening reaction of 1,3-cyclohexadiene and electron diffraction of the photodissociation of CS. In each case, inversion yields a model that reproduces the experimental data, identifies the main dynamic motifs, and agrees with independent experimental observations. Notably, the method explicitly accounts for continuity constraints and is robust even for noisy data.

References

  1. J Chem Phys. 2006 Dec 21;125(23):234302 [PMID: 17190553]
  2. Faraday Discuss. 2021 May 27;228(0):104-122 [PMID: 33595043]
  3. J Chem Theory Comput. 2020 Apr 14;16(4):2594-2605 [PMID: 32142278]
  4. J Chem Phys. 2016 Oct 21;145(15):154304 [PMID: 27782487]
  5. J Chem Phys. 2014 Aug 7;141(5):054110 [PMID: 25106573]
  6. Phys Chem Chem Phys. 2022 Oct 12;24(39):24542-24552 [PMID: 36193799]
  7. Sci Adv. 2019 Sep 06;5(9):eaax6625 [PMID: 31523713]
  8. Opt Express. 2011 Aug 29;19(18):17318-35 [PMID: 21935096]
  9. Faraday Discuss. 2016 Dec 16;194:525-536 [PMID: 27711844]
  10. J Chem Theory Comput. 2019 Mar 12;15(3):1523-1537 [PMID: 30702882]
  11. Phys Rev A. 1991 Jan 1;43(1):578-581 [PMID: 9904816]
  12. Chem Rev. 2017 Aug 23;117(16):11066-11124 [PMID: 28590727]
  13. J Chem Phys. 2015 Feb 21;142(7):074308 [PMID: 25702016]
  14. J Chem Phys. 2012 Jan 28;136(4):044310 [PMID: 22299874]
  15. J Chem Phys. 2006 Dec 14;125(22):224101 [PMID: 17176128]
  16. Phys Rev Lett. 2018 May 4;120(18):183003 [PMID: 29775354]
  17. Phys Chem Chem Phys. 2022 Jun 29;24(25):15416-15427 [PMID: 35707953]
  18. J Phys Chem Lett. 2015 Feb 5;6(3):343-6 [PMID: 26261944]
  19. Wiley Interdiscip Rev Comput Mol Sci. 2018 Nov-Dec;8(6):e1370 [PMID: 30450129]
  20. Phys Rev Lett. 2015 Jun 26;114(25):255501 [PMID: 26197134]
  21. Phys Chem Chem Phys. 2020 Aug 21;22(31):17567-17573 [PMID: 32716454]
  22. Nat Chem. 2019 Jun;11(6):504-509 [PMID: 30988415]
  23. Phys Chem Chem Phys. 2015 Sep 28;17(36):23298-302 [PMID: 26300122]
  24. Science. 2009 Mar 13;323(5920):1464-8 [PMID: 19286552]
  25. Science. 2015 Dec 18;350(6267):1501-5 [PMID: 26680192]
  26. Chem Rev. 2004 Apr;104(4):1719-57 [PMID: 15080710]
  27. Faraday Discuss. 2016 Dec 16;194:117-145 [PMID: 27711817]
  28. Acta Crystallogr A. 2010 Jan;66(Pt 1):32-7 [PMID: 20029131]
  29. Angew Chem Int Ed Engl. 2000 Aug 4;39(15):2586-2631 [PMID: 10934390]
  30. Acta Crystallogr A. 2008 Mar;64(Pt 2):303-15 [PMID: 18285625]
  31. Nat Commun. 2012;3:1276 [PMID: 23232406]
  32. J Phys Chem A. 2015 Aug 20;119(33):8832-45 [PMID: 26192201]
  33. J Chem Phys. 2012 Oct 21;137(15):154310 [PMID: 23083168]
  34. J Chem Theory Comput. 2019 May 14;15(5):2836-2846 [PMID: 30875212]
  35. Nat Commun. 2015 Sep 04;6:8172 [PMID: 26337631]
  36. Chem Asian J. 2011 Nov 4;6(11):3028-34 [PMID: 21997902]
  37. Science. 2020 May 22;368(6493):885-889 [PMID: 32439793]
  38. Chemphyschem. 2006 Feb 13;7(2):353-62 [PMID: 16411250]
  39. Phys Chem Chem Phys. 2018 Jul 4;20(26):17714-17726 [PMID: 29876567]
  40. J Chem Phys. 2019 Aug 28;151(8):084301 [PMID: 31470697]
  41. J Chem Phys. 2017 Jul 7;147(1):013932 [PMID: 28688438]
  42. Annu Rev Phys Chem. 2011;62:19-39 [PMID: 21054174]
  43. J Chem Phys. 2019 Nov 7;151(17):174302 [PMID: 31703488]
  44. Faraday Discuss. 2014;171:81-91 [PMID: 25415842]
  45. Phys Chem Chem Phys. 2017 Aug 2;19(30):19545-19553 [PMID: 28474039]
  46. J Chem Phys. 2022 Oct 28;157(16):164305 [PMID: 36319419]
  47. J Chem Phys. 2007 Dec 21;127(23):234106 [PMID: 18154374]
  48. Struct Dyn. 2014 Jul 09;1(4):044101 [PMID: 26798781]
  49. Phys Rev Lett. 2012 Sep 28;109(13):133202 [PMID: 23030087]
  50. Phys Rev Lett. 2011 Mar 18;106(11):115501 [PMID: 21469876]
  51. Faraday Discuss. 2012;157:193-212; discussion 243-84 [PMID: 23230770]
  52. Struct Dyn. 2022 Oct 17;9(5):054303 [PMID: 36267802]
  53. Nat Chem. 2019 Aug;11(8):716-721 [PMID: 31285542]
  54. J Phys Chem Lett. 2021 Apr 22;12(15):3755-3761 [PMID: 33844534]
  55. J Chem Theory Comput. 2016 Mar 8;12(3):957-67 [PMID: 26717255]
  56. Phys Chem Chem Phys. 2017 Mar 15;19(11):7853-7863 [PMID: 28262866]
  57. J Chem Phys. 2014 Dec 28;141(24):244115 [PMID: 25554141]
  58. Nat Commun. 2020 May 1;11(1):2157 [PMID: 32358535]
  59. J Chem Phys. 2021 Jan 21;154(3):034302 [PMID: 33499612]
  60. J Chem Theory Comput. 2014 Nov 11;10(11):4911-20 [PMID: 26584376]

Word Cloud

Created with Highcharts 10.0.0datamethodexperimentalinversiontime-resolvedultrafastexperimentsintroducedbasedforward-optimizationtrajectorybasisappliedX-rayscatteringphotochemicalring-openingreaction13-cyclohexadieneelectrondiffractionphotodissociationCScaseyieldsmodelreproducesidentifiesmaindynamicmotifsagreesindependentobservationsNotablyexplicitlyaccountscontinuityconstraintsrobustevennoisyRobustInversionTime-ResolvedDataviaForward-OptimizationTrajectoryBasis

Similar Articles

Cited By