Better null models for assessing predictive accuracy of disease models.

Alexander C Keyel, A Marm Kilpatrick
Author Information
  1. Alexander C Keyel: Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America. ORCID
  2. A Marm Kilpatrick: Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America.

Abstract

Null models provide a critical baseline for the evaluation of predictive disease models. Many studies consider only the grand mean null model (i.e. R2) when evaluating the predictive ability of a model, which is insufficient to convey the predictive power of a model. We evaluated ten null models for human cases of West Nile virus (WNV), a zoonotic mosquito-borne disease introduced to the United States in 1999. The Negative Binomial, Historical (i.e. using previous cases to predict future cases) and Always Absent null models were the strongest overall, and the majority of null models significantly outperformed the grand mean. The length of the training timeseries increased the performance of most null models in US counties where WNV cases were frequent, but improvements were similar for most null models, so relative scores remained unchanged. We argue that a combination of null models is needed to evaluate the forecasting performance of predictive models for infectious diseases and the grand mean is the lowest bar.

References

  1. Acta Trop. 2018 Sep;185:242-250 [PMID: 29727611]
  2. PLoS Comput Biol. 2021 Feb 12;17(2):e1008618 [PMID: 33577550]
  3. J Med Entomol. 2019 Oct 28;56(6):1508-1515 [PMID: 31549727]
  4. J Med Entomol. 2019 Oct 28;56(6):1448-1455 [PMID: 31549719]
  5. BMC Public Health. 2023 Apr 28;23(1):782 [PMID: 37118796]
  6. PLoS Comput Biol. 2018 Mar 9;14(3):e1006047 [PMID: 29522514]
  7. Geohealth. 2020 Aug 27;4(9):e2020GH000244 [PMID: 32885112]
  8. Geohealth. 2023 Apr 04;7(4):e2022GH000747 [PMID: 37026081]
  9. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14908-12 [PMID: 18815364]
  10. Science. 2011 Oct 21;334(6054):323-7 [PMID: 22021850]
  11. Am J Trop Med Hyg. 1955 Sep;4(5):872-88 [PMID: 13259011]
  12. PLoS Negl Trop Dis. 2021 Sep 9;15(9):e0009653 [PMID: 34499656]
  13. Science. 1999 Dec 17;286(5448):2333-7 [PMID: 10600742]
  14. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24268-24274 [PMID: 31712420]
  15. Lancet. 2012 Dec 1;380(9857):1946-55 [PMID: 23200503]
  16. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2113561119 [PMID: 35394862]
  17. J Clin Transl Sci. 2022 Apr 19;6(1):e59 [PMID: 35720970]
  18. Emerg Infect Dis. 2003 Mar;9(3):311-22 [PMID: 12643825]

Grants

  1. U01 CK000509/NCEZID CDC HHS
  2. R01 AI168097/NIAID NIH HHS

MeSH Term

Animals
United States
Humans
West Nile Fever
Culicidae
West Nile virus
Forecasting

Word Cloud

Created with Highcharts 10.0.0modelsnullpredictivecasesdiseasegrandmeanmodelieWNVperformanceNullprovidecriticalbaselineevaluationManystudiesconsiderR2evaluatingabilityinsufficientconveypowerevaluatedtenhumanWestNileviruszoonoticmosquito-borneintroducedUnitedStates1999NegativeBinomialHistoricalusingpreviouspredictfutureAlwaysAbsentstrongestoverallmajoritysignificantlyoutperformedlengthtrainingtimeseriesincreasedUScountiesfrequentimprovementssimilarrelativescoresremainedunchangedarguecombinationneededevaluateforecastinginfectiousdiseaseslowestbarBetterassessingaccuracy

Similar Articles

Cited By