Ectopic expression of DnaJ type-I protein homolog of () confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants.

Ranjana Gautam, Rajesh Kumar Meena, Sakshi Rampuria, Pawan Shukla, P B Kirti
Author Information
  1. Ranjana Gautam: Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
  2. Rajesh Kumar Meena: Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
  3. Sakshi Rampuria: Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
  4. Pawan Shukla: Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India.
  5. P B Kirti: Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.

Abstract

Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of RMO-40. is induced by multiple stresses. In tobacco, ectopic expression of reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher F/F ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of HO and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.

Keywords

References

  1. Plant Biotechnol J. 2017 Apr;15(4):405-414 [PMID: 27860233]
  2. Plant J. 2017 Mar;89(5):870-884 [PMID: 28008672]
  3. J Integr Plant Biol. 2020 Jan;62(1):25-54 [PMID: 31850654]
  4. Cell Stress Chaperones. 2019 Jan;24(1):7-15 [PMID: 30478692]
  5. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  6. Biochem Biophys Res Commun. 1990 Jan 30;166(2):642-7 [PMID: 2302229]
  7. BMC Plant Biol. 2010 Oct 25;10:230 [PMID: 20973995]
  8. PLoS One. 2015 Apr 17;10(4):e0125168 [PMID: 25886365]
  9. Life Sci. 2010 Mar 13;86(11-12):377-84 [PMID: 20060844]
  10. Int J Mol Sci. 2013 Apr 10;14(4):7771-83 [PMID: 23574938]
  11. Plant Cell Physiol. 2011 Aug;52(8):1376-88 [PMID: 21700722]
  12. Front Plant Sci. 2019 Jun 25;10:800 [PMID: 31293607]
  13. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1140-5 [PMID: 9927707]
  14. Planta. 2008 Jul;228(2):225-40 [PMID: 18365246]
  15. Plant Cell Environ. 2013 Aug;36(8):1449-64 [PMID: 23356734]
  16. Cell. 2016 Oct 6;167(2):313-324 [PMID: 27716505]
  17. Plant Physiol. 2005 Sep;139(1):151-62 [PMID: 16113208]
  18. Plant Cell. 2011 Feb;23(2):499-514 [PMID: 21343416]
  19. J Exp Bot. 2013 May;64(8):2155-69 [PMID: 23606412]
  20. Plant Cell. 2007 Jan;19(1):320-32 [PMID: 17259264]
  21. Fungal Genet Biol. 2018 Sep;118:37-44 [PMID: 30003956]
  22. Front Plant Sci. 2022 Mar 31;13:866265 [PMID: 35432437]
  23. Plant Cell Environ. 2021 Jun;44(6):1769-1787 [PMID: 33583055]
  24. Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92 [PMID: 20651708]
  25. Plant Cell. 2010 Apr;22(4):1313-32 [PMID: 20418496]
  26. Sci Rep. 2019 May 7;9(1):7012 [PMID: 31065035]
  27. Front Plant Sci. 2018 Jun 15;9:729 [PMID: 29963062]
  28. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  29. Front Plant Sci. 2022 May 16;13:870695 [PMID: 35651772]
  30. Curr Biol. 2007 Mar 20;17(6):499-508 [PMID: 17350264]
  31. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  32. Funct Integr Genomics. 2018 Sep;18(5):569-579 [PMID: 29744759]
  33. Mol Biol Rep. 2022 Jul;49(7):6189-6197 [PMID: 35412177]
  34. New Phytol. 2018 Jan;217(2):480-490 [PMID: 29271039]
  35. Arch Biochem Biophys. 1968 Apr;125(1):189-98 [PMID: 5655425]
  36. Plant Physiol. 1999 Nov;121(3):695-703 [PMID: 10557217]
  37. Free Radic Res. 1998 Jun;28(6):659-71 [PMID: 9736317]
  38. Front Plant Sci. 2016 May 04;7:571 [PMID: 27200044]
  39. Plant Physiol Biochem. 2019 Sep;142:254-262 [PMID: 31326718]
  40. Trends Plant Sci. 2010 Feb;15(2):89-97 [PMID: 20036181]
  41. Front Plant Sci. 2018 Dec 07;9:1771 [PMID: 30581446]
  42. Front Plant Sci. 2020 Oct 30;11:568489 [PMID: 33193495]
  43. Plant J. 2013 Apr;74(1):110-21 [PMID: 23289813]
  44. Int J Mol Sci. 2019 Jan 16;20(2): [PMID: 30654548]
  45. Plant Physiol Biochem. 2017 Jun;115:183-199 [PMID: 28376411]
  46. Rev Physiol Biochem Pharmacol. 2006;156:1-21 [PMID: 16634144]
  47. Methods Mol Biol. 1995;49:39-48 [PMID: 8563823]
  48. Front Plant Sci. 2021 Feb 10;12:600426 [PMID: 33643342]
  49. Plant Cell. 1995 Jul;7(7):1099-1111 [PMID: 12242400]
  50. Plant Physiol Biochem. 2014 Sep;82:95-104 [PMID: 24929777]
  51. Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):6058-6063 [PMID: 29784797]
  52. Plant Sci. 2018 Jul;272:62-74 [PMID: 29807607]
  53. Front Plant Sci. 2020 Nov 13;11:591911 [PMID: 33281852]
  54. Cell. 1993 Jul 16;74(1):5-6 [PMID: 8334705]
  55. Plant Physiol. 2002 Aug;129(4):1533-43 [PMID: 12177466]
  56. Turk J Biol. 2018 Feb 15;42(1):12-22 [PMID: 30814866]
  57. Plant Cell Rep. 2010 Feb;29(2):203-9 [PMID: 20054552]
  58. Front Plant Sci. 2017 Aug 08;8:1374 [PMID: 28848578]
  59. Biodes Res. 2022 Jan 21;2022:9819314 [PMID: 37850130]
  60. Plant Direct. 2021 Jan 25;5(1):e00298 [PMID: 33532690]
  61. Front Plant Sci. 2022 Nov 24;13:1066765 [PMID: 36507426]
  62. Front Plant Sci. 2019 Jan 08;9:1875 [PMID: 30671067]
  63. Physiol Mol Biol Plants. 2018 Jul;24(4):551-561 [PMID: 30042612]
  64. Front Plant Sci. 2017 May 01;8:689 [PMID: 28507559]
  65. Front Plant Sci. 2020 Jul 29;11:1138 [PMID: 32849699]
  66. Front Plant Sci. 2016 Feb 25;7:220 [PMID: 26941772]
  67. Biochemistry. 2014 Mar 4;53(8):1360-72 [PMID: 24512202]
  68. EMBO Rep. 2004 Jun;5(6):567-71 [PMID: 15170475]
  69. Plant Physiol Biochem. 2014 Oct;83:100-6 [PMID: 25128645]
  70. Arch Virol. 2009;154(6):959-67 [PMID: 19458900]
  71. Plant Biotechnol J. 2016 Jan;14(1):313-22 [PMID: 25940960]
  72. Philos Trans R Soc Lond B Biol Sci. 2018 Jan 19;373(1738): [PMID: 29203718]
  73. J Exp Bot. 2000 Feb;51 Spec No:447-58 [PMID: 10938853]
  74. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  75. Hortic Res. 2020 Dec 1;7(1):207 [PMID: 33328446]
  76. Front Plant Sci. 2021 Jan 06;11:552969 [PMID: 33488637]
  77. Genome. 2012 Nov;55(11):783-96 [PMID: 23199573]
  78. Ann Bot. 2003 Jan;91 Spec No:179-94 [PMID: 12509339]
  79. New Phytol. 2012 Apr;194(2):364-378 [PMID: 22356282]
  80. Front Plant Sci. 2017 Jun 29;8:1147 [PMID: 28706531]
  81. Trends Plant Sci. 2021 Nov;26(11):1153-1170 [PMID: 34334317]
  82. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  83. Sci Rep. 2022 Jul 1;12(1):11199 [PMID: 35778483]
  84. Annu Rev Genet. 1993;27:437-96 [PMID: 8122909]
  85. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  86. Front Plant Sci. 2017 Feb 20;8:161 [PMID: 28265276]

Word Cloud

Created with Highcharts 10.0.0stresstobaccotransgenicplantsdroughtheatexpressionreducedDnaJgeneinducedABAtolerancecropstudyearlymultiplegrowthphotosyntheticefficiencyhigherdamagegenesReducedproductivityresultsalteredplantphysiologicalprocessescauseddysfunctionalproteinsdueenvironmentalstressorsnovelType-IencodingzincfingermotifC-terminaldomainfoundupontreatmentwithin5 mintolerantgenotypeRMO-40stressesectopicsensitivityseedgerminationstagesseedlingConcomitantlyalsoimprovedabilitywithstandmodulatingF/FratiosinhibitionAdditionallyshowedbuild-upHOlowerMDAlevelschlorophyllcontentattenuatedcelloxidativeanalysisusingqRT-PCRdemonstratedoverexpressionassociatedROS-detoxification-relatedstress-markeroftenresponsesfindingssuggesthypothesiswherebypositivelyinfluencessignallingsuggestspotentialgeneticimprovementEctopictype-IproteinhomologconfersinsensitivityVaDJI

Similar Articles

Cited By (3)