Lignocellulosic residues from bioethanol production: a novel source of biopolymers for laccase immobilization.

Valeria V��zquez, Victoria Giorgi, Fernando Bonfiglio, Pilar Men��ndez, Larissa Gioia, Karen Ovsejevi
Author Information
  1. Valeria V��zquez: ��rea Bioqu��mica, Departamento de Biociencias, Facultad de Qu��mica, Universidad de la Rep��blica General Flores 2124 11800 Montevideo Uruguay lgioia@fq.edu.uy kovsejev@fq.edu.uy +598 29241806. ORCID
  2. Victoria Giorgi: Universidad de la Rep��blica, Facultad de Qu��mica, Departamento de Qu��mica Org��nica Montevideo Uruguay. ORCID
  3. Fernando Bonfiglio: Latitud - Fundaci��n LATU, Centro de Investigaciones en Biocombustibles 2G Montevideo Uruguay. ORCID
  4. Pilar Men��ndez: Universidad de la Rep��blica, Facultad de Qu��mica, Departamento de Qu��mica Org��nica Montevideo Uruguay. ORCID
  5. Larissa Gioia: ��rea Bioqu��mica, Departamento de Biociencias, Facultad de Qu��mica, Universidad de la Rep��blica General Flores 2124 11800 Montevideo Uruguay lgioia@fq.edu.uy kovsejev@fq.edu.uy +598 29241806. ORCID
  6. Karen Ovsejevi: ��rea Bioqu��mica, Departamento de Biociencias, Facultad de Qu��mica, Universidad de la Rep��blica General Flores 2124 11800 Montevideo Uruguay lgioia@fq.edu.uy kovsejev@fq.edu.uy +598 29241806. ORCID

Abstract

The full utilization of the main components in the lignocellulosic biomass is the major goal from a biorefinery point of view, giving not only environmental benefits but also making the process economically viable. In this sense the solid residue obtained in bioethanol production after steam explosion pretreatment, enzymatic hydrolysis, and fermentation of the lignocellulosic biomass, was studied for further valorization. Two different residues were analyzed, one generated by the production of cellulosic ethanol from an energy crop such as switchgrass () and the other, from wood (). The chemical composition of these by-products showed that they were mainly composed of lignin with a total content range from 70 to 83% (w/w) and small amounts of cellulose and hemicellulose. The present work was focused on devising a new alternative for processing these materials, based on the ability of the ionic liquids (IL) to dissolve lignocellulosic biomass. The resulting mixture of biopolymers and IL constituted the raw material for developing new insoluble biocatalysts. Active hydrogels based on fungal laccase from 1488 were attained. A multifactorial analysis of the main variables involved in the immobilization process enabled a more direct approach to improving hydrogel-bound activity. These hydrogels achieved a 97% reduction in the concentration of the estrogen ethinylestradiol, an emerging contaminant of particular concern due to its endocrine activity. The novel biocatalysts based on fungal laccase entrapped on a matrix made from a by-product of second-generation bioethanol production presents great potential for performing heterogeneous catalysis offering extra value to the ethanol biorefinery.

References

  1. Recent Pat Biotechnol. 2008;2(1):10-24 [PMID: 19075849]
  2. Biophys Chem. 2007 Dec;131(1-3):62-70 [PMID: 17904724]
  3. Sci Total Environ. 2019 Nov 10;690:447-459 [PMID: 31299577]
  4. Front Bioeng Biotechnol. 2021 Apr 16;9:677963 [PMID: 33937224]
  5. Renew Sustain Energy Rev. 2022 Apr;158:112135 [PMID: 35039746]
  6. Water Res. 2007 Aug;41(15):3281-8 [PMID: 17585984]
  7. Environ Monit Assess. 2020 Jun 13;192(7):426 [PMID: 32533378]
  8. Anal Biochem. 1985 Oct;150(1):76-85 [PMID: 3843705]
  9. Int J Mol Sci. 2018 Jan 31;19(2): [PMID: 29385108]
  10. Environ Int. 2017 Feb;99:107-119 [PMID: 28040262]
  11. Eng Life Sci. 2021 Dec 21;22(3-4):165-177 [PMID: 35382546]
  12. Cell Mol Life Sci. 2015 Mar;72(5):869-83 [PMID: 25572295]
  13. Biomacromolecules. 2004 Jul-Aug;5(4):1379-84 [PMID: 15244454]
  14. Crit Rev Biotechnol. 2021 Nov;41(7):969-993 [PMID: 33818232]
  15. Polymers (Basel). 2020 Jan 11;12(1): [PMID: 31940847]
  16. Chem Rev. 2018 Jan 24;118(2):801-838 [PMID: 28876904]
  17. Molecules. 2022 Dec 09;27(24): [PMID: 36557852]
  18. Environ Sci Technol. 2013 May 7;47(9):4536-43 [PMID: 23544499]
  19. Bioresour Technol. 2020 Sep;311:123528 [PMID: 32444114]
  20. Philos Trans R Soc Lond B Biol Sci. 2014 Nov 19;369(1656): [PMID: 25405961]
  21. Biomed Res Int. 2014;2014:614038 [PMID: 24829908]
  22. Prep Biochem Biotechnol. 2019;49(4):375-383 [PMID: 30777480]
  23. Chem Rev. 2017 May 24;117(10):6834-6880 [PMID: 28535680]
  24. Sci Total Environ. 2019 Dec 20;697:134058 [PMID: 31487597]
  25. J Hazard Mater. 2022 Jun 15;432:128688 [PMID: 35316636]
  26. Sci Rep. 2018 Nov 23;8(1):17285 [PMID: 30470810]
  27. Chem Soc Rev. 2012 Feb 21;41(4):1519-37 [PMID: 22266483]
  28. Cell. 2021 Mar 18;184(6):1636-1647 [PMID: 33639085]
  29. Bioresour Technol. 2010 Jun;101(11):4056-61 [PMID: 20133130]
  30. J Hazard Mater. 2012 Apr 30;213-214:175-83 [PMID: 22342900]

Word Cloud

Created with Highcharts 10.0.0lignocellulosicbiomassbioethanolproductionbasedlaccasemainbiorefineryprocessresiduesethanolnewILbiopolymersbiocatalystshydrogelsfungalimmobilizationactivitynovelfullutilizationcomponentsmajorgoalpointviewgivingenvironmentalbenefitsalsomakingeconomicallyviablesensesolidresidueobtainedsteamexplosionpretreatmentenzymatichydrolysisfermentationstudiedvalorizationTwodifferentanalyzedonegeneratedcellulosicenergycropswitchgrasswoodchemicalcompositionby-productsshowedmainlycomposedlignintotalcontentrange7083%w/wsmallamountscellulosehemicellulosepresentworkfocuseddevisingalternativeprocessingmaterialsabilityionicliquidsdissolveresultingmixtureconstitutedrawmaterialdevelopinginsolubleActive1488attainedmultifactorialanalysisvariablesinvolvedenableddirectapproachimprovinghydrogel-boundachieved97%reductionconcentrationestrogenethinylestradiolemergingcontaminantparticularconcerndueendocrineentrappedmatrixmadeby-productsecond-generationpresentsgreatpotentialperformingheterogeneouscatalysisofferingextravalueLignocellulosicproduction:source

Similar Articles

Cited By