Comparing the succession of microbial communities throughout development in field and laboratory nests of the ambrosia beetle .

Janina M C Diehl, Alexander Keller, Peter H W Biedermann
Author Information
  1. Janina M C Diehl: Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Freiburg im Breisgau, Germany.
  2. Alexander Keller: Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany.
  3. Peter H W Biedermann: Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Freiburg im Breisgau, Germany.

Abstract

Some fungus-farming ambrosia beetles rely on multiple nutritional cultivars (Ascomycota: Ophiostomatales and/or yeasts) that seem to change in relative abundance over time. The succession of these fungi could benefit beetle hosts by optimal consumption of the substrate and extended longevity of the nest. However, abundances of fungal cultivars and other symbionts are poorly known and their culture-independent quantification over development has been studied in only a single species. Here, for the first time, we compared the diversity and succession of both fungal and bacterial communities of fungus gardens in the fruit-tree pinhole borer, , from field and laboratory nests over time. By amplicon sequencing of probed fungus gardens of both nest types at three development phases we showed an extreme reduction of diversity in both bacterial and fungal symbionts in laboratory nests. Furthermore, we observed a general transition from nutritional to non-beneficial fungal symbionts during beetle development. While one known nutritional mutualist, , was occurring more or less stable over time, the second mutualist was dominating young nests and decreased in abundance at the expense of other secondary fungi. The quicker the succession proceeded, the slower offspring beetles developed, suggesting a negative role of these secondary symbionts. Finally, we found signs of transgenerational costs of late dispersal for daughters, possibly as early dispersers transmitted and started their own nests with less of the non-beneficial taxa. Future studies should focus on the functional roles of the few bacterial taxa that were present in both field and laboratory nests.

Keywords

References

  1. Annu Rev Entomol. 2020 Jan 7;65:431-455 [PMID: 31610133]
  2. Science. 1967 Jul 28;157(3787):460-3 [PMID: 17798700]
  3. Eng Life Sci. 2022 Feb 05;22(5):376-390 [PMID: 35573133]
  4. Insects. 2020 Aug 13;11(8): [PMID: 32823564]
  5. Chem Soc Rev. 2018 Mar 5;47(5):1638-1651 [PMID: 28745342]
  6. PeerJ. 2019 Nov 18;7:e8103 [PMID: 31763076]
  7. PLoS One. 2010 Sep 10;5(9): [PMID: 20844760]
  8. Appl Environ Microbiol. 2019 Sep 17;85(19): [PMID: 31375485]
  9. ISME J. 2020 Nov;14(11):2715-2731 [PMID: 32709975]
  10. Appl Microbiol Biotechnol. 2021 May;105(9):3393-3410 [PMID: 33837831]
  11. Mycologia. 2020 Nov-Dec;112(6):1104-1137 [PMID: 32552515]
  12. Nature. 1970 Feb 14;225(5233):661-2 [PMID: 16056665]
  13. FEMS Microbiol Ecol. 2013 Mar;83(3):711-23 [PMID: 23057948]
  14. Front Microbiol. 2023 Mar 02;14:1110474 [PMID: 36937297]
  15. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  16. Proc Biol Sci. 2015 May 22;282(1807):20150212 [PMID: 25925100]
  17. Science. 1966 Jul 8;153(3732):193-5 [PMID: 17831508]
  18. Proc Biol Sci. 2001 May 22;268(1471):1033-9 [PMID: 11375087]
  19. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  20. Proc Biol Sci. 2022 Nov 9;289(1986):20221458 [PMID: 36321493]
  21. Curr Opin Insect Sci. 2017 Aug;22:92-100 [PMID: 28805645]
  22. Bull Entomol Res. 2004 Dec;94(6):517-24 [PMID: 15541191]
  23. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30): [PMID: 34285074]
  24. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  25. J Vector Ecol. 2017 Jun;42(1):105-112 [PMID: 28504428]
  26. Environ Microbiol. 2021 May;23(5):2659-2668 [PMID: 33817921]
  27. ISME J. 2015 Jan;9(1):126-38 [PMID: 25083930]
  28. Microb Ecol. 2007 Jul;54(1):112-8 [PMID: 17264992]
  29. Horm Behav. 2009 Jun;56(1):1-10 [PMID: 19281813]
  30. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  31. Nat Rev Microbiol. 2010 Jan;8(1):15-25 [PMID: 19946288]
  32. Environ Entomol. 2009 Aug;38(4):1096-105 [PMID: 19689888]
  33. Zoolog Sci. 2005 Aug;22(8):917-22 [PMID: 16141705]
  34. Appl Microbiol Biotechnol. 2009 Nov;85(2):323-33 [PMID: 19554324]
  35. mBio. 2014 Nov 18;5(6):e02077 [PMID: 25406380]
  36. Nat Prod Rep. 2022 Feb 23;39(2):231-248 [PMID: 34879123]
  37. Fungal Biol. 2015 Nov;119(11):1075-1092 [PMID: 26466881]
  38. Microb Ecol. 2018 Nov;76(4):925-940 [PMID: 29675704]
  39. Front Microbiol. 2020 Sep 24;11:562140 [PMID: 33101237]
  40. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17064-9 [PMID: 21969580]
  41. mSystems. 2020 Sep 15;5(5): [PMID: 32934115]
  42. Front Zool. 2012 Jun 06;9(1):13 [PMID: 22672512]
  43. Naturwissenschaften. 2022 Apr 25;109(3):25 [PMID: 35467116]
  44. Proc Biol Sci. 2019 Dec 18;286(1917):20192332 [PMID: 31847779]

Word Cloud

Created with Highcharts 10.0.0nestssuccessionlaboratorytimefungalsymbiontsdevelopmentfieldambrosiabeetlesnutritionalbeetlebacterialcultivarsabundancefunginestknowndiversitycommunitiesfungusgardensnon-beneficialmutualistlesssecondarytaxastudiesmicrobialfungus-farmingrelymultipleAscomycota:Ophiostomatalesand/oryeastsseemchangerelativebenefithostsoptimalconsumptionsubstrateextendedlongevityHoweverabundancespoorlyculture-independentquantificationstudiedsinglespeciesfirstcomparedfruit-treepinholeborerampliconsequencingprobedtypesthreephasesshowedextremereductionFurthermoreobservedgeneraltransitiononeoccurringstableseconddominatingyoungdecreasedexpensequickerproceededsloweroffspringdevelopedsuggestingnegativeroleFinallyfoundsignstransgenerationalcostslatedispersaldaughterspossiblyearlydisperserstransmittedstartedFuturefocusfunctionalrolespresentComparingthroughoutXyleborinussaxeseniivsinsectagricultureinsect-fungusmutualismmetabarcodingsymbiosis

Similar Articles

Cited By (1)