Reconstitution and post-thaw storage of cryopreserved human mesenchymal stromal cells: Pitfalls and optimizations for clinically compatible formulants.

Rasmus Roost Aabling, Toke Alstrup, Emma Mader Kjær, Kristine Juul Poulsen, Jonas Oute Pedersen, Anne Louise Revenfeld, Bjarne Kuno Møller, Marco Eijken
Author Information
  1. Rasmus Roost Aabling: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  2. Toke Alstrup: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  3. Emma Mader Kjær: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  4. Kristine Juul Poulsen: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  5. Jonas Oute Pedersen: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  6. Anne Louise Revenfeld: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  7. Bjarne Kuno Møller: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
  8. Marco Eijken: Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.

Abstract

Introduction: The regenerative and immunomodulatory properties of multipotent mesenchymal stromal cells (MSCs) make them an intriguing asset for therapeutic applications. An off-the-shelf approach, using pre-expanded cryopreserved allogenic MSCs, bypasses many practical difficulties of cellular therapy. Reconstitution of a MSC product away from cytotoxic cryoprotectants towards a preferred administration solution might be favorable for several indications. Variations in MSC handling accompanied by a non-standardized use of reconstitution solutions complicate a general clinical standardization of MSC cellular therapies. In this study, we aimed to identify a simple and clinically compatible approach for thawing, reconstitution, and post-thaw storage of cryopreserved MSCs.
Methods: Human adipose tissue-derived MSCs were expanded in Human platelet lysate (hPL) supplemented culture medium and cryopreserved using a dimethyl sulfoxide (DMSO)-based cryoprotectant. Isotonic solutions (saline, Ringer's acetate and phosphate buffered saline (PBS)) with or without 2% Human serum albumin (HSA) were used as thawing, reconstitution, and storage solutions. MSCs were reconstituted to 5 × 10 MSCs/mL for evaluating MSC stability. Total MSC numbers and viability were determined using 7-aminoactinomycin D (7-AAD) and flow cytometry.
Results: For thawing cryopreserved MSCs the presence of protein was proven to be essential. Up to 50% of MSCs were lost when protein-free thawing solutions were used. Reconstitution and post-thaw storage of MSCs in culture medium and widely used PBS demonstrated poor MSC stability (>40% cell loss) and viability (<80%) after 1 h of storage at room temperature. Reconstitution in simple isotonic saline appeared to be a good alternative for post-thaw storage, ensuring >90% viability with no observed cell loss for at least 4 h. Reconstitution of MSCs to low concentrations was identified as critical. Diluting MSCs to <10/mL in protein-free vehicles resulted in instant cell loss (>40% cell loss) and lower viability (<80%). Addition of clinical grade HSA could prevent cell loss during thawing and dilution.
Conclusion: This study identified a clinically compatible method for MSC thawing and reconstitution that ensures high MSC yield, viability, and stability. The strength of the method lies within the simplicity of implementation which offers an accessible way to streamline MSC therapies across different laboratories and clinical trials, improving standardization in this field.

Keywords

References

  1. Cell Transplant. 2013;22(6):1075-86 [PMID: 23043973]
  2. Transfusion. 2009 Jul;49(7):1471-81 [PMID: 19389020]
  3. Cytotherapy. 2013 Apr;15(4):460-6 [PMID: 23318345]
  4. Int Orthop. 2019 Apr;43(4):1011-1025 [PMID: 30498909]
  5. J Gene Med. 2018 Jan;20(1): [PMID: 29243283]
  6. Cell Death Dis. 2016 Jan 21;7:e2062 [PMID: 26794657]
  7. Foot Ankle Surg. 2021 Aug;27(6):636-642 [PMID: 32826167]
  8. Front Immunol. 2020 Feb 25;11:143 [PMID: 32158443]
  9. Exp Clin Endocrinol Diabetes. 2021 Jul;129(7):542-548 [PMID: 31412379]
  10. Stem Cells Transl Med. 2019 Jun;8(6):504-511 [PMID: 30835956]
  11. Eur J Pharm Biopharm. 2014 Apr;86(3):459-68 [PMID: 24240028]
  12. Stem Cells Int. 2019 Jan 20;2019:5909524 [PMID: 30805009]
  13. J Diabetes Investig. 2021 May;12(5):803-810 [PMID: 32926576]
  14. Stem Cells Transl Med. 2020 Nov;9(11):1277-1286 [PMID: 32639099]
  15. Stem Cells Dev. 2011 Aug;20(8):1297-308 [PMID: 21303266]
  16. Front Cell Neurosci. 2021 Feb 09;15:628940 [PMID: 33633544]
  17. J Am Coll Cardiol. 2009 Dec 8;54(24):2277-86 [PMID: 19958962]
  18. J Transl Med. 2018 Oct 24;16(1):291 [PMID: 30355298]
  19. Transplant Rev (Orlando). 2008 Oct;22(4):262-73 [PMID: 18656340]
  20. Front Immunol. 2021 Feb 10;11:618243 [PMID: 33643298]
  21. Brain. 2011 Jun;134(Pt 6):1790-807 [PMID: 21493695]
  22. Inflamm Bowel Dis. 2015 Nov;21(11):2696-707 [PMID: 26230863]
  23. Stem Cells Dev. 2016 Sep 15;25(18):1342-54 [PMID: 27349989]
  24. Stem Cell Investig. 2018 Jun 07;5:19 [PMID: 30050919]
  25. Osteoarthritis Cartilage. 2018 Jun;26(6):711-729 [PMID: 29544858]
  26. PeerJ. 2017 May 17;5:e3301 [PMID: 28533959]
  27. Stroke. 2019 Oct;50(10):2835-2841 [PMID: 31495331]
  28. Tissue Eng. 2006 Jun;12(6):1711-9 [PMID: 16846365]
  29. J Tissue Eng Regen Med. 2008 Oct;2(7):436-44 [PMID: 18720444]
  30. Transfusion. 2011 Jan;51(1):137-47 [PMID: 20609197]
  31. Cancer Cell Int. 2020 Apr 7;20:114 [PMID: 32280306]
  32. Nat Rev Immunol. 2008 Sep;8(9):726-36 [PMID: 19172693]
  33. Mol Med Rep. 2019 Mar;19(3):2189-2201 [PMID: 30664198]

Word Cloud

Created with Highcharts 10.0.0MSCsMSCReconstitutionthawingstorageviabilitycryopreservedcelllossreconstitutionsolutionspost-thawstromalusingclinicalclinicallycompatiblehumansalineusedstabilitymesenchymalcellsapproachcellulartherapystandardizationtherapiesstudysimpleculturemediumPBSHSAprotein-free>40%<80%identifiedmethodIntroduction:regenerativeimmunomodulatorypropertiesmultipotentmakeintriguingassettherapeuticapplicationsoff-the-shelfpre-expandedallogenicbypassesmanypracticaldifficultiesproductawaycytotoxiccryoprotectantstowardspreferredadministrationsolutionmightfavorableseveralindicationsVariationshandlingaccompaniednon-standardizedusecomplicategeneralaimedidentifyMethods:Humanadiposetissue-derivedexpandedplateletlysatehPLsupplementeddimethylsulfoxideDMSO-basedcryoprotectantIsotonicRinger'sacetatephosphatebufferedwithout2%serumalbuminreconstituted5 × 10MSCs/mLevaluatingTotalnumbersdetermined7-aminoactinomycinD7-AADflowcytometryResults:presenceproteinprovenessential50%lostwidelydemonstratedpoor1 hroomtemperatureisotonicappearedgoodalternativeensuring>90%observedleast4 hlowconcentrationscriticalDiluting<10/mLvehiclesresultedinstantlowerAdditiongradepreventdilutionConclusion:ensureshighyieldstrengthlieswithinsimplicityimplementationoffersaccessiblewaystreamlineacrossdifferentlaboratoriestrialsimprovingfieldcells:PitfallsoptimizationsformulantsCellCellularCryopreservationMesenchymalThawing

Similar Articles

Cited By (5)