Haplotype-resolved genome assembly of Coriaria nepalensis a non-legume nitrogen-fixing shrub.

Shi-Wei Zhao, Jing-Fang Guo, Lei Kong, Shuai Nie, Xue-Mei Yan, Tian-Le Shi, Xue-Chan Tian, Hai-Yao Ma, Yu-Tao Bao, Zhi-Chao Li, Zhao-Yang Chen, Ren-Gang Zhang, Yong-Peng Ma, Yousry A El-Kassaby, Ilga Porth, Wei Zhao, Jian-Feng Mao
Author Information
  1. Shi-Wei Zhao: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  2. Jing-Fang Guo: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  3. Lei Kong: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  4. Shuai Nie: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  5. Xue-Mei Yan: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  6. Tian-Le Shi: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  7. Xue-Chan Tian: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  8. Hai-Yao Ma: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  9. Yu-Tao Bao: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  10. Zhi-Chao Li: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  11. Zhao-Yang Chen: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
  12. Ren-Gang Zhang: Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. ORCID
  13. Yong-Peng Ma: Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. ORCID
  14. Yousry A El-Kassaby: Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. ORCID
  15. Ilga Porth: Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada. ORCID
  16. Wei Zhao: Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, SE-901 87, Sweden. zhao.wei@umu.se.
  17. Jian-Feng Mao: National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China. jianfeng.mao@umu.se. ORCID

Abstract

Coriaria nepalensis Wall. (Coriariaceae) is a nitrogen-fixing shrub which forms root nodules with the actinomycete Frankia. Oils and extracts of C. nepalensis have been reported to be bacteriostatic and insecticidal, and C. nepalensis bark provides a valuable tannin resource. Here, by combining PacBio HiFi sequencing and Hi-C scaffolding techniques, we generated a haplotype-resolved chromosome-scale genome assembly for C. nepalensis. This genome assembly is approximately 620 Mb in size with a contig N50 of 11 Mb, with 99.9% of the total assembled sequences anchored to 40 pseudochromosomes. We predicted 60,862 protein-coding genes of which 99.5% were annotated from databases. We further identified 939 tRNAs, 7,297 rRNAs, and 982 ncRNAs. The chromosome-scale genome of C. nepalensis is expected to be a significant resource for understanding the genetic basis of root nodulation with Frankia, toxicity, and tannin biosynthesis.

References

  1. Nature. 2000 Dec 14;408(6814):796-815 [PMID: 11130711]
  2. Bioinformatics. 2008 Mar 1;24(5):637-44 [PMID: 18218656]
  3. Genome Biol. 2019 Dec 16;20(1):277 [PMID: 31842948]
  4. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  5. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  6. Yeast. 2011 Aug;28(8):611-7 [PMID: 21755533]
  7. Bioinformatics. 2018 Feb 15;34(4):550-557 [PMID: 29444236]
  8. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  9. Nat Commun. 2017 Aug 15;8(1):249 [PMID: 28811498]
  10. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  11. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  12. Science. 2018 Jul 13;361(6398): [PMID: 29794220]
  13. Mol Phylogenet Evol. 2000 Jan;14(1):11-9 [PMID: 10631039]
  14. Nucleic Acids Res. 2014 Jan;42(Database issue):D7-17 [PMID: 24259429]
  15. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  16. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  17. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  18. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  19. Genome Biol. 2020 Sep 10;21(1):241 [PMID: 32912315]
  20. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  21. Nucleic Acids Res. 2021 Jan 8;49(D1):D192-D200 [PMID: 33211869]
  22. Elife. 2018 Oct 16;7: [PMID: 30325307]
  23. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  24. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  25. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  26. Sci Data. 2023 May 9;10(1):259 [PMID: 37156769]
  27. Nat Prod Res. 2011 Jul;25(11):1074-81 [PMID: 21726130]
  28. Hortic Res. 2020 Jun 1;7(1):95 [PMID: 32528707]
  29. Nat Commun. 2019 Nov 14;10(1):5158 [PMID: 31727887]
  30. Nat Ecol Evol. 2022 Jul;6(7):924-935 [PMID: 35513577]
  31. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  32. Plant Divers. 2017 May 03;39(3):140-148 [PMID: 30159504]
  33. Mol Plant. 2015 Mar;8(3):489-92 [PMID: 25667002]
  34. Mol Plant. 2022 Dec 5;15(12):1841-1851 [PMID: 36307977]
  35. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  36. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  37. Genome Res. 2008 Jan;18(1):188-96 [PMID: 18025269]
  38. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  39. New Phytol. 2022 Apr;234(1):295-310 [PMID: 34997964]
  40. Bioinformatics. 2020 Apr 1;36(7):2253-2255 [PMID: 31778144]
  41. Cell Syst. 2016 Jul;3(1):99-101 [PMID: 27467250]
  42. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  43. Nat Genet. 2009 Dec;41(12):1275-81 [PMID: 19881527]
  44. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  45. Gigascience. 2020 Sep 1;9(9): [PMID: 32893860]
  46. Nat Genet. 2013 May;45(5):487-94 [PMID: 23525075]
  47. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  48. Genome Biol. 2019 Dec 16;20(1):275 [PMID: 31843001]
  49. Nat Commun. 2020 Feb 20;11(1):971 [PMID: 32080175]
  50. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  51. Nucleic Acids Res. 2016 Jul 8;44(12):e113 [PMID: 27131372]
  52. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  53. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  54. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  55. Curr Protoc Bioinformatics. 2018 Jun;62(1):e51 [PMID: 29927072]
  56. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  57. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 [PMID: 28460117]
  58. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]
  59. Bioinformatics. 2022 May 13;38(10):2922-2926 [PMID: 35561173]

Grants

  1. 32171816/National Natural Science Foundation of China (National Science Foundation of China)

MeSH Term

Haplotypes
Magnoliopsida
Molecular Sequence Annotation
Phylogeny
Genome, Plant
Chromosomes, Plant

Word Cloud

Created with Highcharts 10.0.0nepalensisCgenomeassemblyCoriarianitrogen-fixingshrubrootFrankiatanninresourcechromosome-scale99WallCoriariaceaeformsnodulesactinomyceteOilsextractsreportedbacteriostaticinsecticidalbarkprovidesvaluablecombiningPacBioHiFisequencingHi-Cscaffoldingtechniquesgeneratedhaplotype-resolvedapproximately620 MbsizecontigN5011 Mb9%totalassembledsequencesanchored40pseudochromosomespredicted60862protein-codinggenes5%annotateddatabasesidentified939tRNAs7297rRNAs982ncRNAsexpectedsignificantunderstandinggeneticbasisnodulationtoxicitybiosynthesisHaplotype-resolvednon-legume

Similar Articles

Cited By