TFEB inhibition induces melanoma shut-down by blocking the cell cycle and rewiring metabolism.

C Ariano, F Costanza, M Akman, C Riganti, D Corà, E Casanova, E Astanina, V Comunanza, F Bussolino, G Doronzo
Author Information
  1. C Ariano: Department of Oncology, University of Torino, Torino, Italy.
  2. F Costanza: Department of Oncology, University of Torino, Torino, Italy.
  3. M Akman: Department of Oncology, University of Torino, Torino, Italy. ORCID
  4. C Riganti: Department of Oncology, University of Torino, Torino, Italy. ORCID
  5. D Corà: Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.
  6. E Casanova: Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy. ORCID
  7. E Astanina: Department of Oncology, University of Torino, Torino, Italy.
  8. V Comunanza: Department of Oncology, University of Torino, Torino, Italy.
  9. F Bussolino: Department of Oncology, University of Torino, Torino, Italy. federico.bussolino@unito.it. ORCID
  10. G Doronzo: Department of Oncology, University of Torino, Torino, Italy. gabriella.doronzo@unito.it. ORCID

Abstract

Melanomas are characterised by accelerated cell proliferation and metabolic reprogramming resulting from the contemporary dysregulation of the MAPK pathway, glycolysis and the tricarboxylic acid (TCA) cycle. Here, we suggest that the oncogenic transcription factor EB (TFEB), a key regulator of lysosomal biogenesis and function, controls melanoma tumour growth through a transcriptional programme targeting ERK1/2 activity and glucose, glutamine and cholesterol metabolism. Mechanistically, TFEB binds and negatively regulates the promoter of DUSP-1, which dephosphorylates ERK1/2. In melanoma cells, TFEB silencing correlates with ERK1/2 dephosphorylation at the activation-related p-Thr185 and p-Tyr187 residues. The decreased ERK1/2 activity synergises with TFEB control of CDK4 expression, resulting in cell proliferation blockade. Simultaneously, TFEB rewires metabolism, influencing glycolysis, glucose and glutamine uptake, and cholesterol synthesis. In TFEB-silenced melanoma cells, cholesterol synthesis is impaired, and the uptake of glucose and glutamine is inhibited, leading to a reduction in glycolysis, glutaminolysis and oxidative phosphorylation. Moreover, the reduction in TFEB level induces reverses TCA cycle, leading to fatty acid production. A syngeneic BRAFV600E melanoma model recapitulated the in vitro study results, showing that TFEB silencing sustains the reduction in tumour growth, increase in DUSP-1 level and inhibition of ERK1/2 action, suggesting a pivotal role for TFEB in maintaining proliferative melanoma cell behaviour and the operational metabolic pathways necessary for meeting the high energy demands of melanoma cells.

References

  1. Genome Biol. 2014;15(6):122 [PMID: 25180339]
  2. Annu Rev Biochem. 2008;77:289-312 [PMID: 18518822]
  3. Life Sci. 2020 Apr 1;246:117418 [PMID: 32057899]
  4. Curr Protoc Hum Genet. 2008 Apr;Chapter 10:Unit 10.11 [PMID: 18428421]
  5. Cancer Biol Ther. 2010 Mar 1;9(5):337-40 [PMID: 20139719]
  6. Pharmacol Rev. 2008 Sep;60(3):261-310 [PMID: 18922965]
  7. Annu Rev Genet. 2004;38:365-411 [PMID: 15568981]
  8. Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):783-795 [PMID: 33297755]
  9. Oncogene. 2007 May 14;26(22):3227-39 [PMID: 17496918]
  10. Nat Rev Cancer. 2016 Jun;16(6):345-58 [PMID: 27125352]
  11. Oncotarget. 2015 Oct 20;6(32):32748-60 [PMID: 26293674]
  12. Oncogene. 2010 Jan 21;29(3):313-24 [PMID: 19881548]
  13. Sci Signal. 2019 Nov 05;12(606): [PMID: 31690633]
  14. Mol Cell Biol. 2015 Jan;35(1):26-40 [PMID: 25312648]
  15. Oncotarget. 2016 Feb 2;7(5):5598-612 [PMID: 26734996]
  16. J Biol Chem. 2004 Nov 12;279(46):47726-31 [PMID: 15358777]
  17. Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C62-C72 [PMID: 29046293]
  18. Enzyme Res. 2011;2011:939472 [PMID: 21941634]
  19. Sci Signal. 2012 Jun 12;5(228):ra42 [PMID: 22692423]
  20. Mol Cell. 2020 Jan 2;77(1):120-137.e9 [PMID: 31733993]
  21. Nat Med. 2017 Apr;23(4):472-482 [PMID: 28319094]
  22. Nat Rev Endocrinol. 2017 Jan;13(1):36-49 [PMID: 27636730]
  23. Autophagy. 2012 Dec;8(12):1845-7 [PMID: 22932698]
  24. Oncogene. 2017 Jan 12;36(2):147-157 [PMID: 27270434]
  25. PLoS One. 2020 Sep 3;15(9):e0238546 [PMID: 32881934]
  26. Nat Commun. 2018 Aug 17;9(1):3312 [PMID: 30120233]
  27. Lab Invest. 2017 Jun;97(6):649-656 [PMID: 28263292]
  28. Front Mol Biosci. 2019 Oct 23;6:110 [PMID: 31709262]
  29. Elife. 2018 Dec 06;7: [PMID: 30520728]
  30. Cancer. 2018 Sep 1;124(17):3490-3499 [PMID: 29663336]
  31. BMC Cancer. 2010 Mar 12;10:95 [PMID: 20226009]
  32. J Cell Sci. 2016 Jul 1;129(13):2475-81 [PMID: 27252382]
  33. Autophagy. 2017 Mar 4;13(3):506-521 [PMID: 27977328]
  34. Nature. 2008 Mar 13;452(7184):181-6 [PMID: 18337815]
  35. BMJ Open Diabetes Res Care. 2014 Apr 26;2(1):e000017 [PMID: 25452863]
  36. Biochim Biophys Acta. 2007 Aug;1773(8):1299-310 [PMID: 17188374]
  37. BMC Bioinformatics. 2010 Aug 23;11:435 [PMID: 20731828]
  38. Annu Rev Cancer Biol. 2019 Mar;3:203-222 [PMID: 31650096]
  39. FEBS J. 2015 Feb;282(4):647-72 [PMID: 25495651]
  40. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50 [PMID: 18032601]
  41. Mol Cancer Ther. 2015 Jul;14(7):1680-92 [PMID: 25948295]
  42. In Vivo. 2014 Nov-Dec;28(6):1005-11 [PMID: 25398793]
  43. Nat Struct Mol Biol. 2018 Jun;25(6):515-521 [PMID: 29872227]
  44. Mol Oncol. 2021 Feb;15(2):327-346 [PMID: 33252196]
  45. Cancer Discov. 2014 Apr;4(4):423-33 [PMID: 24469106]
  46. Semin Cancer Biol. 2019 Dec;59:187-207 [PMID: 31362075]
  47. Trends Biochem Sci. 2019 Jun;44(6):490-501 [PMID: 30655165]
  48. Nat Commun. 2020 Jul 17;11(1):3612 [PMID: 32681035]
  49. Signal Transduct Target Ther. 2021 Dec 20;6(1):424 [PMID: 34924562]
  50. Cell Metab. 2018 May 01;27(5):1007-1025.e5 [PMID: 29657030]
  51. Neoplasia. 2012 Apr;14(4):311-23 [PMID: 22577346]
  52. Cell Mol Life Sci. 2014 Jul;71(13):2483-97 [PMID: 24477476]
  53. Pigment Cell Melanoma Res. 2019 Nov;32(6):792-808 [PMID: 31207090]
  54. Onco Targets Ther. 2018 Nov 13;11:8089-8098 [PMID: 30519051]
  55. Cancer Cell. 2013 Mar 18;23(3):302-15 [PMID: 23477830]
  56. Trends Mol Med. 2015 Mar;21(3):164-71 [PMID: 25618774]
  57. Oncogene. 2007 May 14;26(22):3203-13 [PMID: 17496916]
  58. Angiogenesis. 2022 Nov;25(4):471-492 [PMID: 35545719]
  59. J Invest Dermatol. 2003 Nov;121(5):xiv [PMID: 14708586]
  60. Front Physiol. 2012 Sep 12;3:362 [PMID: 22988443]
  61. Nat Metab. 2019 Jan;1:16-33 [PMID: 31032474]
  62. Mol Cell. 2018 Feb 15;69(4):581-593.e7 [PMID: 29452638]
  63. Cell Signal. 2016 May;28(5):335-347 [PMID: 26829212]
  64. Oncogene. 2020 Apr;39(14):2975-2986 [PMID: 32034306]
  65. Nutrients. 2021 Nov 04;13(11): [PMID: 34836195]
  66. J Invest Dermatol. 2009 Feb;129(2):422-31 [PMID: 18971960]
  67. Pigment Cell Melanoma Res. 2016 Sep;29(5):590-7 [PMID: 27287723]
  68. Cell Mol Bioeng. 2010 Jun 1;3(2):151-162 [PMID: 21461187]
  69. J Biol Chem. 2011 Dec 9;286(49):42626-42634 [PMID: 21998308]
  70. Int J Clin Exp Med. 2015 Mar 15;8(3):4186-94 [PMID: 26064329]
  71. Nat Cell Biol. 2012 Dec;14(12):1295-304 [PMID: 23178880]
  72. Nature. 2011 Nov 20;481(7381):385-8 [PMID: 22101431]
  73. Cancer Res. 2013 Jul 1;73(13):4039-49 [PMID: 23639941]
  74. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3041-6 [PMID: 18287029]
  75. Cancer Cell. 2015 Jul 13;28(1):114-28 [PMID: 26073130]
  76. Med Clin North Am. 2015 Nov;99(6):1323-35 [PMID: 26476255]
  77. Cancers (Basel). 2021 Jan 27;13(3): [PMID: 33513833]
  78. Cell Metab. 2017 Jan 10;25(1):182-196 [PMID: 28011087]
  79. EMBO J. 2019 Feb 1;38(3): [PMID: 30591554]
  80. Nature. 2015 Aug 20;524(7565):361-5 [PMID: 26168401]
  81. FEBS J. 2022 Dec;289(24):8003-8019 [PMID: 34606156]
  82. Pigment Cell Melanoma Res. 2012 May;25(3):375-83 [PMID: 22360810]
  83. Front Physiol. 2021 Apr 12;12:640061 [PMID: 33912071]
  84. Nat Commun. 2019 Apr 12;10(1):1693 [PMID: 30979895]
  85. Nat Commun. 2022 Sep 3;13(1):5191 [PMID: 36057632]
  86. Nat Genet. 2000 Jun;25(2):217-22 [PMID: 10835641]
  87. Biochim Biophys Acta Mol Cell Res. 2019 Jan;1866(1):124-143 [PMID: 30401534]
  88. Am J Pathol. 2009 Aug;175(2):867-81 [PMID: 19608870]
  89. Cell. 2013 Oct 10;155(2):397-409 [PMID: 24120138]
  90. Science. 2011 Jun 17;332(6036):1429-33 [PMID: 21617040]
  91. Free Radic Biol Med. 2002 May 1;32(9):938-49 [PMID: 11978496]
  92. Pigment Cell Melanoma Res. 2014 May;27(3):495-501 [PMID: 24460976]
  93. Nat Rev Mol Cell Biol. 2013 May;14(5):283-96 [PMID: 23609508]
  94. Nat Rev Mol Cell Biol. 2020 Oct;21(10):607-632 [PMID: 32576977]
  95. EMBO J. 2018 Jun 1;37(11): [PMID: 29764979]
  96. BMC Med Genet. 2019 Mar 29;20(1):54 [PMID: 30925905]
  97. Oncotarget. 2013 Apr;4(4):584-99 [PMID: 23603840]
  98. Genes Dev. 2019 Aug 1;33(15-16):983-1007 [PMID: 31123060]
  99. Pigment Cell Melanoma Res. 2012 Nov;25(6):732-9 [PMID: 22846158]
  100. EMBO Rep. 2016 Dec;17(12):1721-1730 [PMID: 27856534]
  101. Nucleic Acids Res. 2022 Jan 7;50(D1):D165-D173 [PMID: 34850907]
  102. Cell Rep. 2016 Oct 11;17(3):821-836 [PMID: 27732857]
  103. J Cancer Res Clin Oncol. 2022 Jan;148(1):57-70 [PMID: 34981193]

MeSH Term

Humans
Glutamine
Cell Division
Cell Cycle
Melanoma
Cholesterol
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors

Chemicals

Glutamine
Cholesterol
TFEB protein, human
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors

Word Cloud

Created with Highcharts 10.0.0TFEBmelanomaERK1/2cellglycolysiscycleglucoseglutaminecholesterolmetabolismcellsreductionproliferationmetabolicresultingacidTCAtumourgrowthactivityDUSP-1silencinguptakesynthesisleadinglevelinducesinhibitionMelanomascharacterisedacceleratedreprogrammingcontemporarydysregulationMAPKpathwaytricarboxylicsuggestoncogenictranscriptionfactorEBkeyregulatorlysosomalbiogenesisfunctioncontrolstranscriptionalprogrammetargetingMechanisticallybindsnegativelyregulatespromoterdephosphorylatescorrelatesdephosphorylationactivation-relatedp-Thr185p-Tyr187residuesdecreasedsynergisescontrolCDK4expressionblockadeSimultaneouslyrewiresinfluencingTFEB-silencedimpairedinhibitedglutaminolysisoxidativephosphorylationMoreoverreversesfattyproductionsyngeneicBRAFV600Emodelrecapitulatedvitrostudyresultsshowingsustainsincreaseactionsuggestingpivotalrolemaintainingproliferativebehaviouroperationalpathwaysnecessarymeetinghighenergydemandsshut-downblockingrewiring

Similar Articles

Cited By