Endurance-trained subjects and sedentary controls increase ventricular contractility and efficiency during exercise: Feasibility of hemodynamics assessed by non-invasive pressure-volume loops.

Bj��rn ��stenson, Ellen Ostenfeld, Jonathan Edlund, Einar Heiberg, H��kan Arheden, Katarina Steding-Ehrenborg
Author Information
  1. Bj��rn ��stenson: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Sk��ne University Hospital, Lund, Sweden. ORCID
  2. Ellen Ostenfeld: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Sk��ne University Hospital, Lund, Sweden.
  3. Jonathan Edlund: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Sk��ne University Hospital, Lund, Sweden.
  4. Einar Heiberg: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Sk��ne University Hospital, Lund, Sweden.
  5. H��kan Arheden: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Sk��ne University Hospital, Lund, Sweden.
  6. Katarina Steding-Ehrenborg: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Sk��ne University Hospital, Lund, Sweden.

Abstract

INTRODUCTION: Pressure-volume (PV) loops can be used to assess both load-dependent and load-independent measures of cardiac hemodynamics. However, analysis of PV loops during exercise is challenging as it requires invasive measures. Using a novel method, it has been shown that left ventricular (LV) PV loops at rest can be obtained non-invasively from cardiac magnetic resonance imaging (CMR) and brachial pressures. Therefore, the aim of this study was to assess if LV PV loops can be obtained non-invasively from CMR during exercise to assess cardiac hemodynamics.
METHODS: Thirteen endurance trained (ET; median 48 years [IQR 34-60]) and ten age and sex matched sedentary controls (SC; 43 years [27-57]) were included. CMR images were acquired at rest and during moderate intensity supine exercise defined as 60% of expected maximal heart rate. Brachial pressures were obtained in conjunction with image acquisition.
RESULTS: Contractility measured as maximal ventricular elastance (Emax) increased in both groups during exercise (ET: 1.0 mmHg/ml [0.9-1.1] to 1.1 mmHg/ml [0.9-1.2], p<0.01; SC: 1.1 mmHg/ml [0.9-1.2] to 1.2 mmHg/ml [1.0-1.3], p<0.01). Ventricular efficiency (VE) increased in ET from 70% [66-73] at rest to 78% [75-80] (p<0.01) during exercise and in SC from 68% [63-72] to 75% [73-78] (p<0.01). Arterial elastance (EA) decreased in both groups (ET: 0.8 mmHg/ml [0.7-0.9] to 0.7 mmHg/ml [0.7-0.9], p<0.05; SC: 1.0 mmHg/ml [0.9-1.2] to 0.9 mmHg/ml [0.8-1.0], p<0.05). Ventricular-arterial coupling (EA/Emax) also decreased in both groups (ET: 0.9 [0.8-1.0] to 0.7 [0.6-0.8], p<0.01; SC: 1.0 [0.9-1.1] to 0.7 [0.7-0.8], p<0.01).
CONCLUSIONS: This study demonstrates for the first time that LV PV loops can be generated non-invasively during exercise using CMR. ET and SC increase ventricular efficiency and contractility and decrease afterload and ventricular-arterial coupling during moderate supine exercise. These results confirm known physiology. Therefore, this novel method is applicable to be used during exercise in different cardiac disease states, which has not been possible non-invasively before.

References

  1. Am Heart J. 1993 Jun;125(6):1659-66 [PMID: 8498308]
  2. Am J Cardiol. 1978 Jan;41(1):52-9 [PMID: 623005]
  3. Eur Heart J. 1992 Nov;13 Suppl E:85-90 [PMID: 1478216]
  4. Eur Heart J. 2020 Mar 21;41(12):1286-1297 [PMID: 31435675]
  5. J Am Coll Cardiol. 2010 Sep 7;56(11):845-54 [PMID: 20813282]
  6. Clin Physiol Funct Imaging. 2007 Jan;27(1):36-41 [PMID: 17204036]
  7. J Cardiovasc Magn Reson. 2017 Jan 23;19(1):7 [PMID: 28110638]
  8. Eur Heart J. 2022 Oct 11;43(38):3618-3731 [PMID: 36017548]
  9. Am J Physiol. 1998 Feb;274(2):H500-5 [PMID: 9486253]
  10. Circ Cardiovasc Imaging. 2013 Mar 1;6(2):329-38 [PMID: 23258478]
  11. Lancet. 1986 Feb 8;1(8476):307-10 [PMID: 2868172]
  12. Annu Rev Med. 1974;25:369-81 [PMID: 4596232]
  13. Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H145-53 [PMID: 18456731]
  14. Circulation. 1976 May;53(5):839-47 [PMID: 1260987]
  15. Am J Physiol. 1986 Jun;250(6 Pt 2):R1021-7 [PMID: 3717375]
  16. J Am Coll Cardiol. 2010 Apr 20;55(16):1701-10 [PMID: 20394874]
  17. Circulation. 2021 Apr 13;143(15):1484-1498 [PMID: 33472397]
  18. Circulation. 1994 Dec;90(6):3047-54 [PMID: 7994853]
  19. J Am Coll Cardiol. 2004 Aug 4;44(3):611-7 [PMID: 15358029]
  20. Int J Cardiol. 1992 Aug;36(2):177-86 [PMID: 1512056]
  21. Exerc Sport Sci Rev. 1982;10:270-307 [PMID: 6811283]
  22. Am J Physiol. 1983 Nov;245(5 Pt 1):H773-80 [PMID: 6638199]
  23. Circulation. 1991 Sep;84(3):1016-23 [PMID: 1884438]
  24. Am J Physiol Regul Integr Comp Physiol. 2008 Jul;295(1):R228-35 [PMID: 18463196]
  25. BMC Med Imaging. 2010 Jan 11;10:1 [PMID: 20064248]
  26. Eur Heart J. 2016 Jul 14;37(27):2129-2200 [PMID: 27206819]
  27. Circulation. 1992 Aug;86(2):513-21 [PMID: 1638719]
  28. Am J Physiol. 1979 Mar;236(3):H498-505 [PMID: 426086]
  29. Eur Heart J. 2021 Jan 1;42(1):17-96 [PMID: 32860412]
  30. J Sci Med Sport. 2010 Sep;13(5):496-502 [PMID: 20005170]
  31. Am J Physiol Heart Circ Physiol. 2020 Sep 1;319(3):H642-H650 [PMID: 32762556]
  32. J Am Coll Cardiol. 1994 Oct;24(4):864-6 [PMID: 7930217]
  33. J Cardiovasc Magn Reson. 2013 Oct 24;15:96 [PMID: 24156367]
  34. Circ Res. 1973 Mar;32(3):314-22 [PMID: 4691336]
  35. Am J Cardiol. 2022 Dec 1;184:48-55 [PMID: 36192197]
  36. Eur Heart J Imaging Methods Pract. 2023 Oct 25;1(2):qyad035 [PMID: 37969333]
  37. Med Sci Sports Exerc. 1996 Jul;28(7):892-9 [PMID: 8832544]
  38. Int J Cardiol. 2019 Feb 15;277:178-185 [PMID: 30442376]
  39. Am J Physiol. 1981 Jan;240(1):H39-44 [PMID: 7457620]
  40. Am J Cardiol. 1992 Oct 1;70(9):930-3 [PMID: 1529949]
  41. Eur Heart J Cardiovasc Imaging. 2017 Sep 01;18(9):961-968 [PMID: 28444160]
  42. Br J Sports Med. 2020 Dec;54(24):1451-1462 [PMID: 33239350]
  43. Clin Physiol Funct Imaging. 2021 Sep;41(5):467-470 [PMID: 34121316]
  44. Am J Physiol Heart Circ Physiol. 2013 Jul 1;305(1):H124-34 [PMID: 23645462]
  45. Circ Cardiovasc Imaging. 2019 Dec;12(1):e008493 [PMID: 30630347]
  46. Circ Res. 1974 Jul;35(1):117-26 [PMID: 4841253]
  47. Sci Rep. 2022 Apr 4;12(1):5611 [PMID: 35379859]
  48. Eur J Appl Physiol. 2021 May;121(5):1487-1498 [PMID: 33638017]
  49. Circulation. 2016 Jun 14;133(24):2413-22 [PMID: 27169739]
  50. Circ Heart Fail. 2013 Sep 1;6(5):953-63 [PMID: 23797369]
  51. Hypertension. 2009 Apr;53(4):719-24 [PMID: 19255361]
  52. Acta Physiol Scand. 2004 Sep;182(1):45-51 [PMID: 15329056]
  53. J Am Soc Echocardiogr. 2012 Aug;25(8):882-90 [PMID: 22622108]
  54. PLoS Med. 2007 Oct 16;4(10):e297 [PMID: 17941715]

MeSH Term

Humans
Feasibility Studies
Hemodynamics
Heart Ventricles
Heart
Arteries
Ventricular Function, Left
Stroke Volume

Word Cloud

Created with Highcharts 10.0.0[00exercise1mmHg/mlp<0loops01PV9-1cancardiacventricularnon-invasivelyCMRassesshemodynamicsLVrestobtainedETSCgroupsET:2]SC:efficiency7-07usedmeasuresnovelmethodpressuresThereforestudyyearssedentarycontrolsmoderatesupinemaximalelastanceincreased1]decreased9]0598-10]coupling8]increasecontractilityINTRODUCTION:Pressure-volumeload-dependentload-independentHoweveranalysischallengingrequiresinvasiveUsingshownleftmagneticresonanceimagingbrachialaimMETHODS:Thirteenendurancetrainedmedian48[IQR34-60]tenagesexmatched43[27-57]includedimagesacquiredintensitydefined60%expectedheartrateBrachialconjunctionimageacquisitionRESULTS:ContractilitymeasuredEmax2[10-13]VentricularVE70%[66-73]78%[75-80]68%[63-72]75%[73-78]ArterialEA8Ventricular-arterialEA/Emaxalso6-0CONCLUSIONS:demonstratesfirsttimegeneratedusingdecreaseafterloadventricular-arterialresultsconfirmknownphysiologyapplicabledifferentdiseasestatespossiblebeforeEndurance-trainedsubjectsexercise:Feasibilityassessednon-invasivepressure-volume

Similar Articles

Cited By (3)