The normalization model predicts responses in the human visual cortex during object-based attention.

Narges Doostani, Gholam-Ali Hossein-Zadeh, Maryam Vaziri-Pashkam
Author Information
  1. Narges Doostani: School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran. ORCID
  2. Gholam-Ali Hossein-Zadeh: School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
  3. Maryam Vaziri-Pashkam: Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States. ORCID

Abstract

Divisive normalization of the neural responses by the activity of the neighboring neurons has been proposed as a fundamental operation in the nervous system based on its success in predicting neural responses recorded in primate electrophysiology studies. Nevertheless, experimental evidence for the existence of this operation in the human brain is still scant. Here, using functional MRI, we examined the role of normalization across the visual hierarchy in the human visual cortex. Using stimuli form the two categories of human bodies and houses, we presented objects in isolation or in clutter and asked participants to attend or ignore the stimuli. Focusing on the primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and the scene-selective region PPA, we first modeled single-voxel responses using a weighted sum, a weighted average, and a normalization model and demonstrated that although the weighted sum and weighted average models also made acceptable predictions in some conditions, the response to multiple stimuli could generally be better described by a model that takes normalization into account. We then determined the observed effects of attention on cortical responses and demonstrated that these effects were predicted by the normalization model, but not by the weighted sum or the weighted average models. Our results thus provide evidence that the normalization model can predict responses to objects across shifts of visual attention, suggesting the role of normalization as a fundamental operation in the human brain.

Keywords

References

  1. Neuron. 2000 Jun;26(3):703-14 [PMID: 10896165]
  2. Vision Res. 2009 Jun;49(10):1129-43 [PMID: 19038281]
  3. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9 [PMID: 7667258]
  4. Annu Rev Neurosci. 1995;18:193-222 [PMID: 7605061]
  5. J Neurosci. 2019 Jul 10;39(28):5493-5505 [PMID: 31068439]
  6. PLoS One. 2009;4(2):e4651 [PMID: 19247494]
  7. Vis Neurosci. 1992 Aug;9(2):181-97 [PMID: 1504027]
  8. J Neurosci. 1997 Nov 1;17(21):8621-44 [PMID: 9334433]
  9. Curr Opin Neurobiol. 2010 Apr;20(2):183-90 [PMID: 20303256]
  10. J Neurophysiol. 2013 Jul;110(2):481-94 [PMID: 23615546]
  11. Neuroimage. 2013 Apr 15;70:37-47 [PMID: 23266747]
  12. Nature. 1999 Oct 7;401(6753):584-7 [PMID: 10524624]
  13. Trends Neurosci. 2011 Apr;34(4):210-24 [PMID: 21439656]
  14. Neuron. 2007 Jul 19;55(2):301-12 [PMID: 17640530]
  15. Nat Rev Neurosci. 2002 Feb;3(2):142-51 [PMID: 11836522]
  16. Neuron. 1999 May;23(1):115-25 [PMID: 10402198]
  17. Cereb Cortex. 2019 Apr 1;29(4):1704 [PMID: 30753328]
  18. Science. 1995 May 12;268(5212):889-93 [PMID: 7754376]
  19. Nature. 1999 Jun 10;399(6736):575-9 [PMID: 10376597]
  20. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7 [PMID: 9448245]
  21. Neuron. 2009 Dec 24;64(6):931-42 [PMID: 20064398]
  22. Neuron. 2018 Feb 21;97(4):769-785 [PMID: 29470969]
  23. Curr Biol. 2009 Jun 9;19(11):943-7 [PMID: 19446454]
  24. Nat Neurosci. 2010 Dec;13(12):1554-9 [PMID: 21057509]
  25. J Neurosci. 2002 Mar 1;22(5):1994-2004 [PMID: 11880530]
  26. Nat Hum Behav. 2021 Dec;5(12):1674-1685 [PMID: 34140658]
  27. Nat Commun. 2019 Dec 11;10(1):5660 [PMID: 31827078]
  28. J Neurosci. 2014 Jan 1;34(1):112-23 [PMID: 24381272]
  29. J Neurophysiol. 2017 Sep 1;118(3):1903-1913 [PMID: 28701536]
  30. PLoS Biol. 2016 Nov 21;14(11):e1002578 [PMID: 27870851]
  31. Neuropsychologia. 2019 Sep;132:107140 [PMID: 31301350]
  32. Neuron. 2012 Feb 23;73(4):803-13 [PMID: 22365552]
  33. Proc Natl Acad Sci U S A. 2021 Nov 16;118(46): [PMID: 34772812]
  34. Vision Res. 2012 Dec 1;74:10-20 [PMID: 22580017]
  35. Neuron. 2002 Jul 18;35(2):365-70 [PMID: 12160753]
  36. Annu Rev Psychol. 2011;62:73-101 [PMID: 19575619]
  37. J Neurosci. 1999 Jan 1;19(1):431-41 [PMID: 9870971]
  38. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21447-52 [PMID: 19955434]
  39. Nat Rev Neurosci. 2011 Nov 23;13(1):51-62 [PMID: 22108672]
  40. Annu Rev Psychol. 2017 Jan 3;68:47-72 [PMID: 28051934]
  41. J Neurosci. 2017 Sep 6;37(36):8767-8782 [PMID: 28821655]
  42. Science. 1985 Aug 23;229(4715):782-4 [PMID: 4023713]
  43. J Neurophysiol. 1998 Apr;79(4):2204-7 [PMID: 9535979]
  44. Neuron. 2005 Sep 1;47(5):637-43 [PMID: 16129394]
  45. J Neurophysiol. 1997 Jan;77(1):24-42 [PMID: 9120566]
  46. J Neurosci. 2020 Sep 23;40(39):7545-7558 [PMID: 32859715]
  47. Nat Neurosci. 2006 Sep;9(9):1156-60 [PMID: 16906153]
  48. Proc Natl Acad Sci U S A. 2021 Nov 23;118(47): [PMID: 34789580]
  49. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3314-9 [PMID: 10077681]
  50. Annu Rev Vis Sci. 2015 Nov 24;1:373-391 [PMID: 28532368]
  51. Nat Neurosci. 1999 Aug;2(8):733-9 [PMID: 10412063]
  52. Hum Brain Mapp. 2005 Aug;25(4):402-8 [PMID: 15852382]
  53. Neuron. 2015 Oct 7;88(1):127-44 [PMID: 26447577]
  54. Neuron. 2015 Jan 21;85(2):402-17 [PMID: 25611511]
  55. J Neurosci. 2010 Feb 24;30(8):3058-66 [PMID: 20181602]
  56. J Neurosci. 2000 May 1;20(9):3310-8 [PMID: 10777794]
  57. Nature. 1998 Sep 24;395(6700):376-81 [PMID: 9759726]
  58. Nature. 2001 Jul 12;412(6843):150-7 [PMID: 11449264]
  59. J Neurosci. 2005 Sep 7;25(36):8150-64 [PMID: 16148223]
  60. Hum Brain Mapp. 1998;6(4):316-28 [PMID: 9704268]
  61. Science. 2001 Sep 28;293(5539):2470-3 [PMID: 11577239]
  62. Neuron. 2009 Jan 29;61(2):168-85 [PMID: 19186161]
  63. PLoS Comput Biol. 2013;9(5):e1003079 [PMID: 23737741]
  64. PLoS Comput Biol. 2016 Dec 15;12(12):e1005225 [PMID: 27977679]
  65. J Neurophysiol. 2002 Dec;88(6):3398-408 [PMID: 12466456]
  66. Nat Commun. 2018 May 2;9(1):1774 [PMID: 29720645]
  67. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1663-8 [PMID: 9990081]

Grants

  1. ZIA MH002035/Intramural NIH HHS

MeSH Term

Humans
Brain
Head
Neurons
Photic Stimulation
Primary Visual Cortex
Visual Cortex
Visual Perception

Word Cloud

Created with Highcharts 10.0.0normalizationhumanresponsesvisualweightedmodelattentionoperationcortexstimulisumaverageneuralfundamentalevidencebrainusingroleacrossobjectsregiondemonstratedmodelseffectsobject-basedDivisiveactivityneighboringneuronsproposednervoussystembasedsuccesspredictingrecordedprimateelectrophysiologystudiesNeverthelessexperimentalexistencestillscantfunctionalMRIexaminedhierarchyUsingformtwocategoriesbodieshousespresentedisolationclutteraskedparticipantsattendignoreFocusingprimaryareaV1object-selectiveregionsLOpFsbody-selectiveEBAscene-selectivePPAfirstmodeledsingle-voxelalthoughalsomadeacceptablepredictionsconditionsresponsemultiplegenerallybetterdescribedtakesaccountdeterminedobservedcorticalpredictedresultsthusprovidecanpredictshiftssuggestingpredictsdivisivefMRIneuroscience

Similar Articles

Cited By