Development of frequency tuning shaped by spatial cue reliability in the barn owl's auditory midbrain.

Keanu Shadron, Jos�� Luis Pe��a
Author Information
  1. Keanu Shadron: Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States. ORCID
  2. Jos�� Luis Pe��a: Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.

Abstract

Sensory systems preferentially strengthen responses to stimuli based on their reliability at conveying accurate information. While previous reports demonstrate that the brain reweighs cues based on dynamic changes in reliability, how the brain may learn and maintain neural responses to sensory statistics expected to be stable over time is unknown. The barn owl's midbrain features a map of auditory space where neurons compute horizontal sound location from the interaural time difference (ITD). Frequency tuning of midbrain map neurons correlates with the most reliable frequencies for the neurons' preferred ITD (Cazettes et al., 2014). Removal of the facial ruff led to a specific decrease in the reliability of high frequencies from frontal space. To directly test whether permanent changes in ITD reliability drive frequency tuning, midbrain map neurons were recorded from adult owls, with the facial ruff removed during development, and juvenile owls, before facial ruff development. In both groups, frontally tuned neurons were tuned to frequencies lower than in normal adult owls, consistent with the change in ITD reliability. In addition, juvenile owls exhibited more heterogeneous frequency tuning, suggesting normal developmental processes refine tuning to match ITD reliability. These results indicate causality of long-term statistics of spatial cues in the development of midbrain frequency tuning properties, implementing probabilistic coding for sound localization.

Keywords

References

  1. J Opt Soc Am A Opt Image Sci Vis. 2005 May;22(5):801-9 [PMID: 15898539]
  2. J Comp Physiol A. 1989 Feb;164(5):637-44 [PMID: 2709344]
  3. J Comp Neurol. 1989 Mar 22;281(4):545-54 [PMID: 2708580]
  4. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10932-7 [PMID: 9724807]
  5. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Jun;193(6):613-24 [PMID: 17323066]
  6. Eur J Neurosci. 1990;2(8):693-703 [PMID: 12106287]
  7. J Neurosci. 1984 Apr;4(4):1001-11 [PMID: 6716127]
  8. Nat Neurosci. 2005 Dec;8(12):1684-9 [PMID: 16286934]
  9. J Neurosci. 2021 Dec 15;41(50):10305-10315 [PMID: 34764158]
  10. Eur J Neurosci. 2012 Feb;35(3):445-56 [PMID: 22288481]
  11. J Neurosci. 1990 Oct;10(10):3227-46 [PMID: 2213141]
  12. J Neurosci. 2005 Nov 9;25(45):10446-61 [PMID: 16280583]
  13. J Neurosci. 2004 Aug 11;24(32):7110-7 [PMID: 15306644]
  14. J Neurosci. 1991 Mar;11(3):722-39 [PMID: 2002359]
  15. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14248-14253 [PMID: 31235569]
  16. J Neurophysiol. 1993 Aug;70(2):667-76 [PMID: 8410166]
  17. J Neurosci. 1989 Sep;9(9):3306-13 [PMID: 2795164]
  18. J Neurophysiol. 2011 Oct;106(4):1985-99 [PMID: 21775710]
  19. J Neurosci. 1983 Dec;3(12):2553-62 [PMID: 6655499]
  20. J Neurosci. 1998 May 15;18(10):3929-42 [PMID: 9570820]
  21. Nat Neurosci. 2001 Nov;4(11):1123-30 [PMID: 11687817]
  22. J Comp Physiol A. 1988 May;163(1):117-33 [PMID: 3385664]
  23. J Neurosci. 1982 Sep;2(9):1177-94 [PMID: 7119872]
  24. J Neurosci. 1986 Dec;6(12):3413-22 [PMID: 3794779]
  25. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Oct;192(10):1073-82 [PMID: 16721575]
  26. J Neurosci. 2011 Dec 7;31(49):17811-20 [PMID: 22159097]
  27. Nat Commun. 2019 Nov 8;10(1):5096 [PMID: 31704913]
  28. Lang Speech. 2019 Mar;62(1):61-79 [PMID: 29103359]
  29. Vision Res. 1999 Dec;39(24):4062-75 [PMID: 10748939]
  30. Curr Biol. 2013 Jul 22;23(14):1291-9 [PMID: 23810532]
  31. J Neurosci. 2000 Jan 15;20(2):862-77 [PMID: 10632616]
  32. J Comp Neurol. 1996 Sep 30;373(4):467-83 [PMID: 8889939]
  33. Cognition. 2003 Feb;87(1):B47-57 [PMID: 12499111]
  34. Nat Neurosci. 2001 Apr;4(4):396-401 [PMID: 11276230]
  35. J Neurosci. 2001 May 1;21(9):3161-74 [PMID: 11312301]
  36. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18138-43 [PMID: 22006305]
  37. Science. 2001 Apr 13;292(5515):249-52 [PMID: 11303092]
  38. J Neurosci. 1990 Jan;10(1):222-32 [PMID: 2299394]
  39. J Neurosci. 1993 Nov;13(11):4589-608 [PMID: 8229186]
  40. Science. 2002 Aug 30;297(5586):1556-9 [PMID: 12202831]
  41. Nat Neurosci. 2011 Jul 03;14(8):1061-6 [PMID: 21725311]
  42. J Neurosci. 1987 Oct;7(10):3105-16 [PMID: 3668618]
  43. J Theor Biol. 2005 Jul 7;235(1):45-56 [PMID: 15833312]
  44. J Neurosci. 1984 Jul;4(7):1787-99 [PMID: 6737041]
  45. Elife. 2020 Oct 12;9: [PMID: 33043884]
  46. J Neurophysiol. 1984 Oct;52(4):709-23 [PMID: 6491713]
  47. Cogn Sci. 2010 Apr;34(3):434-464 [PMID: 21339861]
  48. PLoS Biol. 2018 Jul 26;16(7):e2005114 [PMID: 30048446]
  49. J Comput Neurosci. 2017 Feb;42(1):37-52 [PMID: 27714569]
  50. Neuron. 1998 Oct;21(4):789-98 [PMID: 9808465]
  51. Hear Res. 1994 Feb;73(1):67-84 [PMID: 8157508]
  52. Cell Rep. 2020 Mar 31;30(13):4445-4458.e5 [PMID: 32234479]
  53. Nat Neurosci. 2011 Nov 20;15(1):146-54 [PMID: 22101645]
  54. PLoS One. 2009 Nov 05;4(11):e7721 [PMID: 19890389]
  55. J Neurosci. 2007 Jan 3;27(1):180-9 [PMID: 17202485]
  56. J Neurosci. 1993 Sep;13(9):3647-68 [PMID: 7690063]
  57. PLoS One. 2009 Nov 24;4(11):e8015 [PMID: 19956693]
  58. J Neurosci. 2012 Aug 1;32(31):10470-8 [PMID: 22855796]
  59. J Neurosci. 2004 Aug 4;24(31):6991-7006 [PMID: 15295035]
  60. Annu Rev Neurosci. 1987;10:41-65 [PMID: 3551761]
  61. J Neurosci. 1981 Jan;1(1):40-8 [PMID: 7346557]
  62. J Comp Neurol. 2000 May 29;421(2):146-60 [PMID: 10813778]
  63. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Oct;203(10):843-853 [PMID: 28689296]
  64. J Neurophysiol. 2018 Mar 1;119(3):1235-1247 [PMID: 29357460]
  65. J Neurosci. 1997 May 1;17(9):3312-21 [PMID: 9096164]
  66. J Neurosci. 2007 Apr 11;27(15):4191-200 [PMID: 17428997]
  67. Science. 2003 Apr 18;300(5618):498-502 [PMID: 12702879]
  68. Brain Res. 1993 Aug 13;619(1-2):29-38 [PMID: 8374783]
  69. J Acoust Soc Am. 2006 May;119(5 Pt 1):3059-71 [PMID: 16708961]
  70. J Neurosci. 2016 Feb 17;36(7):2101-10 [PMID: 26888922]
  71. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11787-92 [PMID: 11050210]
  72. J Acoust Soc Am. 1989 Feb;85(2):858-67 [PMID: 2926000]
  73. J Neurosci. 2013 Oct 30;33(44):17506-18 [PMID: 24174683]
  74. J Neurophysiol. 1978 Jul;41(4):870-84 [PMID: 681991]
  75. Elife. 2014 Dec 22;3:e04854 [PMID: 25531067]
  76. Biol Cybern. 2016 Oct;110(4-5):333-343 [PMID: 27209198]
  77. J Neurophysiol. 2011 May;105(5):2522-35 [PMID: 21368005]
  78. J Comp Neurol. 1983 Aug 1;218(2):187-96 [PMID: 6886071]
  79. Nat Neurosci. 2006 Jul;9(7):932-9 [PMID: 16783369]
  80. Hear Res. 1998 Apr;118(1-2):13-34 [PMID: 9606058]

Grants

  1. F31 DC019303/NIDCD NIH HHS
  2. R01 DC007690/NIDCD NIH HHS
  3. R01 NS104911/NINDS NIH HHS

MeSH Term

Animals
Strigiformes
Cues
Reproducibility of Results
Acoustic Stimulation
Mesencephalon
Sound Localization
Auditory Pathways

Word Cloud

Created with Highcharts 10.0.0reliabilitytuningmidbrainITDneuronsfrequencyowlsdevelopmentstatisticsbarnmapsoundfrequenciesfacialruffresponsesbasedbraincueschangestimeowl'sauditoryspaceadultjuveniletunednormalspatiallocalizationSensorysystemspreferentiallystrengthenstimuliconveyingaccurateinformationpreviousreportsdemonstratereweighsdynamicmaylearnmaintainneuralsensoryexpectedstableunknownfeaturescomputehorizontallocationinterauraldifferenceFrequencycorrelatesreliableneurons'preferredCazettesetal2014Removalledspecificdecreasehighfrontaldirectlytestwhetherpermanentdriverecordedremovedgroupsfrontallylowerconsistentchangeadditionexhibitedheterogeneoussuggestingdevelopmentalprocessesrefinematchresultsindicatecausalitylong-termpropertiesimplementingprobabilisticcodingDevelopmentshapedcueowlexperience-dependentneurosciencestimulus

Similar Articles

Cited By