Independent control over cell patterning and adhesion on hydrogel substrates for tissue interface mechanobiology.

Louis S Prahl, Catherine M Porter, Jiageng Liu, John M Viola, Alex J Hughes
Author Information
  1. Louis S Prahl: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  2. Catherine M Porter: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  3. Jiageng Liu: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  4. John M Viola: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  5. Alex J Hughes: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Abstract

Tissue boundaries and interfaces are engines of morphogenesis . However, despite a wealth of micropatterning approaches available to control tissue size, shape, and mechanical environment , fine-scale spatial control of cell positioning within tissue constructs remains an engineering challenge. To address this, we augment DNA "velcro" technology for selective patterning of ssDNA-labeled cells on mechanically defined photoactive polyacrylamide hydrogels. Hydrogels bearing photopatterned single-stranded DNA (ssDNA) features for cell capture are then co-functionalized with extracellular matrix (ECM) proteins to support subsequent adhesion of patterned tissues. ECM protein co-functionalization does not alter ssDNA pattern fidelity, cell capture, or hydrogel elastic stiffness. This approach enables mechanobiology studies and measurements of signaling activity at dynamic cell interfaces with precise initial patterning. Combining DNA velcro patterning and ECM functionalization provides independent control of initial cell placement, adhesion, and mechanics, constituting a new tool for studying biological interfaces and for programming multicellular interactions in engineered tissues.

Keywords

References

  1. Methods Mol Biol. 2012;916:317-50 [PMID: 22914951]
  2. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8167-8172 [PMID: 30038020]
  3. BMC Med. 2006 Dec 26;4(1):38 [PMID: 17190588]
  4. ACS Appl Mater Interfaces. 2022 Jan 26;14(3):3643-3652 [PMID: 35006666]
  5. Nat Mater. 2017 Oct;16(10):1029-1037 [PMID: 28892054]
  6. Nat Methods. 2015 Oct;12(10):975-81 [PMID: 26322836]
  7. Nature. 1996 Oct 24;383(6602):722-5 [PMID: 8878483]
  8. Soft Matter. 2012 Jul 21;8(27):7197-7206 [PMID: 23002394]
  9. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):21893-902 [PMID: 26816386]
  10. Biochemistry. 1994 May 17;33(19):5661-73 [PMID: 8180191]
  11. Methods Cell Biol. 2014;121:171-89 [PMID: 24560510]
  12. Nat Commun. 2017 Jul 31;8(1):157 [PMID: 28761157]
  13. Adv Mater. 2016 Mar 9;28(10):2024-9 [PMID: 26689426]
  14. Mol Biol Cell. 2022 Nov 1;33(13):ar129 [PMID: 36129759]
  15. Front Cell Dev Biol. 2021 Jun 07;9:671402 [PMID: 34150767]
  16. Nat Chem Biol. 2022 Feb;18(2):152-160 [PMID: 34937907]
  17. Elife. 2021 Mar 05;10: [PMID: 33667159]
  18. Integr Biol (Camb). 2015 Mar;7(3):298-312 [PMID: 25609037]
  19. J Cell Sci. 2019 May 31;132(11): [PMID: 31076510]
  20. J Phys Condens Matter. 2010 May 19;22(19):194120 [PMID: 21386443]
  21. Cell Rep. 2021 Dec 28;37(13):110181 [PMID: 34965432]
  22. J Vis Exp. 2021 Feb 24;(168): [PMID: 33720126]
  23. Development. 2014 Jul;141(14):2750-9 [PMID: 25005470]
  24. Nat Commun. 2017 May 22;8:15313 [PMID: 28530245]
  25. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21450-5 [PMID: 23223527]
  26. Cancer Res. 2009 May 15;69(10):4167-74 [PMID: 19435897]
  27. Nat Biotechnol. 2008 Jan;26(1):120-6 [PMID: 18026090]
  28. Dev Biol. 2016 Aug 1;416(1):136-148 [PMID: 27265864]
  29. Biophys J. 2000 Jul;79(1):144-52 [PMID: 10866943]
  30. J Cell Physiol. 2005 Jul;204(1):198-209 [PMID: 15669099]
  31. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  32. Dev Cell. 2020 Jun 22;53(6):646-660.e8 [PMID: 32497487]
  33. Dev Cell. 2011 Oct 18;21(4):758-69 [PMID: 21924961]
  34. Am J Physiol Cell Physiol. 2006 Nov;291(5):C869-79 [PMID: 16738004]
  35. Cell. 1997 Mar 7;88(5):603-13 [PMID: 9054500]
  36. Dev Biol. 1998 Oct 15;202(2):215-27 [PMID: 9769173]
  37. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  38. Nat Cell Biol. 2010 Jan;12(1):60-9 [PMID: 19966783]
  39. Nat Commun. 2022 Jul 12;13(1):4026 [PMID: 35821232]
  40. Curr Biol. 2021 Mar 22;31(6):1206-1220.e5 [PMID: 33609453]
  41. J Vis Exp. 2017 Jun 19;(124): [PMID: 28654075]
  42. Stem Cell Reports. 2018 Oct 9;11(4):912-928 [PMID: 30220628]
  43. Nat Commun. 2016 Apr 25;7:11373 [PMID: 27109213]
  44. Nat Commun. 2022 Jan 25;13(1):497 [PMID: 35079017]
  45. Curr Biol. 2008 Oct 28;18(20):1555-64 [PMID: 18804371]
  46. Biophys J. 2007 Dec 15;93(12):4453-61 [PMID: 18045965]
  47. Sci Adv. 2020 Mar 18;6(12):eaay5696 [PMID: 32206713]
  48. Adv Mater. 2020 Aug;32(31):e2002195 [PMID: 32578300]
  49. Nat Commun. 2014 Dec 09;5:5662 [PMID: 25489927]
  50. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5 [PMID: 9391082]
  51. Biomaterials. 1996 Sep;17(17):1647-57 [PMID: 8866026]
  52. Biomacromolecules. 2014 Dec 8;15(12):4621-6 [PMID: 25325667]
  53. J Biomech. 1972 Sep;5(5):541-51 [PMID: 4667277]
  54. J Invest Dermatol. 2002 Feb;118(2):216-25 [PMID: 11841536]
  55. Exp Cell Res. 2011 Nov 15;317(19):2702-10 [PMID: 21978911]
  56. Annu Rev Cell Dev Biol. 2012;28:687-717 [PMID: 22804578]

Grants

  1. F32 DK126385/NIDDK NIH HHS
  2. R01 DK132296/NIDDK NIH HHS
  3. R35 GM133380/NIGMS NIH HHS
  4. T32 HD083185/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0cellcontrolpatterninginterfacestissueDNAECMadhesionTissueengineeringssDNAcapturetissueshydrogelmechanobiologyinitialboundariesenginesmorphogenesisHoweverdespitewealthmicropatterningapproachesavailablesizeshapemechanicalenvironmentfine-scalespatialpositioningwithinconstructsremainschallengeaddressaugment"velcro"technologyselectivessDNA-labeledcellsmechanicallydefinedphotoactivepolyacrylamidehydrogelsHydrogelsbearingphotopatternedsingle-strandedfeaturesco-functionalizedextracellularmatrixproteinssupportsubsequentpatternedproteinco-functionalizationalterpatternfidelityelasticstiffnessapproachenablesstudiesmeasurementssignalingactivitydynamicpreciseCombiningvelcrofunctionalizationprovidesindependentplacementmechanicsconstitutingnewtoolstudyingbiologicalprogrammingmulticellularinteractionsengineeredIndependentsubstratesinterfaceBioengineeringCellbiology

Similar Articles

Cited By (10)