LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing.

Shuqi Xie, Haipeng Si, Cong Liu, Weihao Liu, Muhammad Shafi, Shouzhen Jiang, Weiwei Yue
Author Information
  1. Shuqi Xie: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  2. Haipeng Si: Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China.
  3. Cong Liu: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  4. Weihao Liu: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  5. Muhammad Shafi: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China. ORCID
  6. Shouzhen Jiang: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  7. Weiwei Yue: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China. ORCID

Abstract

Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with AlO as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10 M and 10 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.

Keywords

References

  1. Environ Sci Technol. 2020 Dec 15;54(24):15594-15603 [PMID: 33095569]
  2. Nanoscale. 2017 Mar 2;9(9):3114-3120 [PMID: 28203665]
  3. Annu Rev Phys Chem. 2007;58:267-97 [PMID: 17067281]
  4. Nanomaterials (Basel). 2021 Aug 25;11(9): [PMID: 34578492]
  5. Chem Commun (Camb). 2014 Mar 14;50(21):2707-10 [PMID: 24395125]
  6. Biosens Bioelectron. 2018 Oct 15;117:637-643 [PMID: 30005384]
  7. Phys Rev Lett. 2004 Sep 24;93(13):137404 [PMID: 15524758]
  8. Opt Express. 2015 Sep 21;23(19):24811-21 [PMID: 26406681]
  9. Opt Express. 2006 Oct 16;14(21):9971-81 [PMID: 19529391]
  10. Opt Express. 2019 Feb 4;27(3):3000-3013 [PMID: 30732328]
  11. Small. 2019 Mar;15(11):e1805516 [PMID: 30706645]
  12. Spectrochim Acta A Mol Biomol Spectrosc. 2011 Sep;79(5):1739-46 [PMID: 21676649]
  13. Opt Express. 2021 Mar 15;29(6):8890-8901 [PMID: 33820330]
  14. MAGMA. 2013 Dec;26(6):549-54 [PMID: 23604579]
  15. Light Sci Appl. 2016 Jan 01;5(1):e16003 [PMID: 30167110]
  16. Biosensors (Basel). 2022 Mar 03;12(3): [PMID: 35323428]
  17. Appl Spectrosc. 2008 Feb;62(2):149-56 [PMID: 18284789]
  18. J Oral Maxillofac Pathol. 2012 May;16(2):251-5 [PMID: 22923899]
  19. Phys Rev Lett. 2006 Mar 10;96(9):097401 [PMID: 16606313]
  20. Nanoscale. 2018 Mar 29;10(13):5897-5905 [PMID: 29546897]
  21. Nanoscale. 2021 Jan 28;13(3):1566-1580 [PMID: 33438716]
  22. Talanta. 2016;146:364-8 [PMID: 26695276]

Grants

  1. 12074226;11674199/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0substrate3DsubstratesSERShighdetectionperformancephotolithographyobtaincouplingsurfaceplasmonpolaritonsresultsusing10Mhydrophobicitylight-capturingreproducibilityAlthoughfabricationcontrollablethree-dimensionalmicrostructuresproposedeffectivesolutionremainsgapmanufacturabilitystudyadoptedpyramid-likearraypatternedsapphirePSSAlOdielectriclayeradditionsilvernanoparticlesAgNPsuseddecorateAufilmsmass-producibleSREScaselowfluorescencerealizeslocalizedLSPsSPPsconsistentsimulationobtainedfiniteelementmethodevaluatedrhodamine6GR6GtoluidineblueTBprobemoleculeslimitsrespectivelyexhibitsexcellentcapabilityMoreovershowsself-cleaningabilitylong-termstabilitypracticalapplicationsAllowingconsistencycompositepreparationprocesstestconsideredpromisingmassproductionLSP-SPPCouplingStructureBasedThree-DimensionalPatternedSapphireSubstrateSurfaceEnhancedRamanScatteringSensing

Similar Articles

Cited By