Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine.

Stepan Sysak, Beata Czarczynska-Goslinska, Piotr Szyk, Tomasz Koczorowski, Dariusz T Mlynarczyk, Wojciech Szczolko, Roman Lesyk, Tomasz Goslinski
Author Information
  1. Stepan Sysak: Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland. ORCID
  2. Beata Czarczynska-Goslinska: Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
  3. Piotr Szyk: Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
  4. Tomasz Koczorowski: Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland. ORCID
  5. Dariusz T Mlynarczyk: Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland. ORCID
  6. Wojciech Szczolko: Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland. ORCID
  7. Roman Lesyk: Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszow, Poland. ORCID
  8. Tomasz Goslinski: Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland. ORCID

Abstract

Flavonoids are polyphenolic compounds widely occurring throughout the plant kingdom. They are biologically active and have many medical applications. Flavonoids reveal chemopreventive, anticarcinogenic, and antioxidant properties, as well as being able to modulate the immune system response and inhibit inflammation, angiogenesis, and metastasis. Polyphenols are also believed to reverse multidrug resistance via various mechanisms, induce apoptosis, and activate cell death signals in tumor cells by modulating cell signaling pathways. The main limitation to the broader usage of Flavonoids is their low solubility, poor absorption, and rapid metabolism. To tackle this, the combining of Flavonoids with nanocarriers could improve their bioavailability and create systems of wider functionalities. Recently, interest in hybrid materials based on combinations of metal nanoparticles with Flavonoids has increased due to their unique physicochemical and biological properties, including improved selectivity toward target sites. In addition, Flavonoids have further utilities, even in the initial step of preparation of metal nanomaterials. The review offers knowledge on multiple possibilities of the synthesis of flavonoid-metal nanoparticle conjugates, as well as presents some of their features such as size, shape, surface charge, and stability. The flavonoid-metal nanoparticles are also discussed regarding their biological properties and potential medical applications.

Keywords

References

  1. Nanomaterials (Basel). 2020 Jun 04;10(6): [PMID: 32512703]
  2. J Biomater Appl. 2021 Apr;35(9):1119-1131 [PMID: 33632004]
  3. Talanta. 2021 Jan 15;222:121682 [PMID: 33167288]
  4. J Pharm Anal. 2021 Feb;11(1):108-121 [PMID: 33717617]
  5. 3 Biotech. 2021 Jul;11(7):317 [PMID: 34123696]
  6. Transl Oncol. 2023 Jan;27:101596 [PMID: 36473401]
  7. Sci Rep. 2016 May 16;6:26023 [PMID: 27181267]
  8. Acta Biomater. 2021 Sep 1;131:493-507 [PMID: 34139367]
  9. Biomolecules. 2021 Mar 05;11(3): [PMID: 33807771]
  10. Life Sci. 2022 Nov 15;309:121022 [PMID: 36206836]
  11. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Dec 5;282:121699 [PMID: 35940068]
  12. Int J Nanomedicine. 2021 Jan 19;16:481-492 [PMID: 33500618]
  13. J Hazard Mater. 2022 Mar 15;426:127824 [PMID: 34838354]
  14. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(8):835-848 [PMID: 34038321]
  15. Toxicol Rep. 2022 Apr 22;9:961-969 [PMID: 35875254]
  16. Int J Mol Sci. 2022 Sep 20;23(19): [PMID: 36232319]
  17. Antibiotics (Basel). 2021 Aug 12;10(8): [PMID: 34439019]
  18. Biopolymers. 2021 Jul;112(7):e23429 [PMID: 33851721]
  19. Nutrients. 2020 Feb 12;12(2): [PMID: 32059369]
  20. Regen Biomater. 2022 Feb 18;9:rbac012 [PMID: 35592139]
  21. Free Radic Res. 2010 Oct;44(10):1216-62 [PMID: 20836663]
  22. Front Aging Neurosci. 2019 Jun 26;11:155 [PMID: 31293414]
  23. Int J Biol Macromol. 2022 Aug 1;214:220-229 [PMID: 35714865]
  24. Nutr Cancer. 2021;73(8):1511-1519 [PMID: 32757805]
  25. ScientificWorldJournal. 2013 Dec 29;2013:162750 [PMID: 24470791]
  26. Int J Mol Sci. 2013 Feb 07;14(2):3540-55 [PMID: 23434657]
  27. J Agric Food Chem. 2009 Mar 25;57(6):2576-82 [PMID: 19222219]
  28. Antioxidants (Basel). 2019 Feb 05;8(2): [PMID: 30764536]
  29. Biomed Pharmacother. 2023 Mar;159:114222 [PMID: 36628819]
  30. J Colloid Interface Sci. 2021 Sep 15;598:260-273 [PMID: 33901851]
  31. Nat Prod Rep. 2015 Dec 19;32(12):1622-8 [PMID: 26395516]
  32. Oxid Med Cell Longev. 2021 Aug 25;2021:6072631 [PMID: 34484566]
  33. Environ Int. 2021 Jan;146:106179 [PMID: 33099061]
  34. Eur Rev Med Pharmacol Sci. 2021 Mar;25(6):2630-2636 [PMID: 33829450]
  35. Nanomedicine. 2022 Aug;44:102580 [PMID: 35768037]
  36. Nanoscale. 2012 Mar 21;4(6):1871-80 [PMID: 22076024]
  37. J Biomater Sci Polym Ed. 2022 Feb;33(3):279-298 [PMID: 34547988]
  38. Emergent Mater. 2022;5(6):1593-1615 [PMID: 35005431]
  39. Int J Biol Macromol. 2022 Apr 30;205:211-219 [PMID: 35183598]
  40. Daru. 2022 Dec;30(2):331-341 [PMID: 36197594]
  41. Nutrients. 2016 Sep 09;8(9): [PMID: 27618095]
  42. Int J Mol Sci. 2018 Dec 13;19(12): [PMID: 30551592]
  43. Cell Prolif. 2015 Aug;48(4):465-74 [PMID: 26017818]
  44. J Photochem Photobiol B. 2009 Jan 9;94(1):1-7 [PMID: 18922698]
  45. Pharmaceutics. 2021 May 05;13(5): [PMID: 34062983]
  46. Food Chem. 2021 Feb 15;338:127807 [PMID: 32818865]
  47. Adv Drug Deliv Rev. 2010 Mar 8;62(3):339-45 [PMID: 19909777]
  48. J Diabetes Sci Technol. 2019 Jan;13(1):111-117 [PMID: 30286620]
  49. J Chromatogr A. 2011 May 6;1218(18):2505-12 [PMID: 21411105]
  50. Biomolecules. 2020 Sep 02;10(9): [PMID: 32887473]
  51. Acta Cir Bras. 2020 Feb 7;34(12):e201901202 [PMID: 32049183]
  52. Antioxidants (Basel). 2022 Jan 07;11(1): [PMID: 35052636]
  53. Int J Mol Sci. 2023 Feb 27;24(5): [PMID: 36902038]
  54. Appl Biochem Biotechnol. 2021 Jun;193(6):1727-1743 [PMID: 33713270]
  55. Antioxidants (Basel). 2014 Oct 17;3(4):649-70 [PMID: 26785232]
  56. Br J Pharmacol. 2011 May;163(2):234-45 [PMID: 21244373]
  57. EXCLI J. 2018 May 04;17:399-419 [PMID: 29805347]
  58. J Agric Food Chem. 2014 Apr 16;62(15):3321-33 [PMID: 24650232]
  59. Exp Parasitol. 2022 Nov;242:108367 [PMID: 36055388]
  60. Life Sci. 2021 Jun 15;275:119377 [PMID: 33757771]
  61. PLoS One. 2022 Oct 21;17(10):e0276296 [PMID: 36269783]
  62. Pediatr Allergy Immunol Pulmonol. 2020 Jun;33(2):69-79 [PMID: 34678092]
  63. Biomed Pharmacother. 2021 Aug;140:111596 [PMID: 34126315]
  64. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jun 5;274:121142 [PMID: 35305522]
  65. Int J Mol Sci. 2022 Jul 03;23(13): [PMID: 35806418]
  66. Biomaterials. 2011 Dec;32(36):9810-7 [PMID: 21944826]
  67. Molecules. 2022 Feb 21;27(4): [PMID: 35209223]
  68. Breast Cancer (Auckl). 2022 Mar 25;16:11782234221086728 [PMID: 35359610]
  69. Talanta. 2019 Apr 1;195:841-849 [PMID: 30625626]
  70. Med Res Rev. 2006 Nov;26(6):747-66 [PMID: 16710860]
  71. Acta Trop. 2022 Jul;231:106448 [PMID: 35395228]
  72. Biochem Biophys Rep. 2021 Apr 10;26:100991 [PMID: 33912692]
  73. J Colloid Interface Sci. 2021 Jul;593:172-181 [PMID: 33744528]
  74. J Cell Mol Med. 2021 Jan;25(2):652-665 [PMID: 33215883]
  75. Pharmaceutics. 2022 Feb 24;14(3): [PMID: 35335868]
  76. J Funct Biomater. 2022 Apr 14;13(2): [PMID: 35466225]
  77. Int J Biol Macromol. 2021 Nov 30;191:738-745 [PMID: 34517028]
  78. J Biomol Struct Dyn. 2005 Jun;22(6):719-24 [PMID: 15842176]
  79. Colloids Surf B Biointerfaces. 2021 Mar;199:111533 [PMID: 33388719]
  80. Drug Deliv. 2022 Dec;29(1):664-678 [PMID: 35209786]
  81. Int J Immunopathol Pharmacol. 2022 Jan-Dec;36:3946320221137435 [PMID: 36319192]
  82. Appl Microbiol Biotechnol. 2022 Sep;106(18):5987-6002 [PMID: 35951081]

Grants

  1. 2019/35/B/NZ7/01165/National Science Center

Word Cloud

Created with Highcharts 10.0.0flavonoidspropertiesmetalnanoparticlesFlavonoidsmedicalapplicationswellalsocellbiologicalflavonoid-metalpolyphenoliccompoundswidelyoccurringthroughoutplantkingdombiologicallyactivemanyrevealchemopreventiveanticarcinogenicantioxidantablemodulateimmunesystemresponseinhibitinflammationangiogenesismetastasisPolyphenolsbelievedreversemultidrugresistanceviavariousmechanismsinduceapoptosisactivatedeathsignalstumorcellsmodulatingsignalingpathwaysmainlimitationbroaderusagelowsolubilitypoorabsorptionrapidmetabolismtacklecombiningnanocarriersimprovebioavailabilitycreatesystemswiderfunctionalitiesRecentlyinteresthybridmaterialsbasedcombinationsincreaseddueuniquephysicochemicalincludingimprovedselectivitytowardtargetsitesadditionutilitieseveninitialsteppreparationnanomaterialsreviewoffersknowledgemultiplepossibilitiessynthesisnanoparticleconjugatespresentsfeaturessizeshapesurfacechargestabilitydiscussedregardingpotentialMetalNanoparticle-FlavonoidConnections:SynthesisPhysicochemicalBiologicalPropertiesWellPotentialApplicationsMedicinecancerpolyphenolsreactiveoxygenspecies

Similar Articles

Cited By (12)