Microphysiological head and neck cancer model identifies novel role of lymphatically secreted monocyte migration inhibitory factor in cancer cell migration and metabolism.

Ravi Chandra Yada, Danielle E Desa, Amani A Gillette, Emmett Bartels, Paul M Harari, Melissa C Skala, David J Beebe, Sheena C Kerr
Author Information
  1. Ravi Chandra Yada: Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
  2. Danielle E Desa: Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA.
  3. Amani A Gillette: Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA.
  4. Emmett Bartels: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
  5. Paul M Harari: Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
  6. Melissa C Skala: Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
  7. David J Beebe: Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA. Electronic address: djbeebe@wisc.edu.
  8. Sheena C Kerr: Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA. Electronic address: skerr2@wisc.edu.

Abstract

Regional metastasis of head and neck cancer (HNC) is prevalent (approximately 50% of patients at diagnosis), yet the underlying drivers and mechanisms of lymphatic spread remain unclear. The complex tumor microenvironment (TME) of HNC plays a crucial role in disease maintenance and progression; however, the contribution of the lymphatics remains underexplored. We created a primary patient cell derived microphysiological system that incorporates cancer-associated-fibroblasts from patients with HNC alongside a HNC tumor spheroid and a lymphatic microvessel to create an in vitro TME platform to investigate metastasis. Screening of soluble factor signaling identified novel secretion of macrophage migration inhibitory factor (MIF) by lymphatic endothelial cells conditioned in the TME. Importantly, we also observed patient-to-patient heterogeneity in cancer cell migration similar to the heterogeneity observed in clinical disease. Optical metabolic imaging at the single cell level identified a distinct metabolic profile of migratory versus non-migratory HNC cells in a microenvironment dependent manner. Additionally, we report a unique role of MIF in increasing HNC reliance on glycolysis over oxidative phosphorylation. This multicellular, microfluidic platform expands the tools available to explore HNC biology in vitro through multiple orthogonal outputs and establishes a system with enough resolution to visualize and quantify patient-to-patient heterogeneity.

Keywords

References

  1. Sci Rep. 2020 Apr 21;10(1):6741 [PMID: 32317702]
  2. Front Immunol. 2019 Apr 09;10:720 [PMID: 31024552]
  3. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  4. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19494-9 [PMID: 18042710]
  5. Head Neck. 2014 Mar;36(3):385-92 [PMID: 23728942]
  6. Clin Cancer Res. 2009 Mar 1;15(5):1585-92 [PMID: 19190133]
  7. Biomaterials. 2019 Sep;214:119225 [PMID: 31154151]
  8. J Allergy Clin Immunol. 2019 Jan;143(1):104-113.e14 [PMID: 29524537]
  9. Lab Chip. 2014 Aug 21;14(16):2941-7 [PMID: 24903648]
  10. Eur J Med Res. 2010 Aug 20;15(8):337-44 [PMID: 20947470]
  11. Laryngoscope. 2011 Jun;121(6):1202-7 [PMID: 21480280]
  12. N Engl J Med. 2020 Jan 2;382(1):60-72 [PMID: 31893516]
  13. J Biomed Opt. 2022 May;27(5): [PMID: 35643815]
  14. Nat Rev Cancer. 2021 Mar;21(3):162-180 [PMID: 33462499]
  15. Int J Mol Med. 2018 Feb;41(2):1062-1068 [PMID: 29207023]
  16. J Biomed Sci. 2006 Mar;13(2):159-72 [PMID: 16453176]
  17. Lab Chip. 2021 Mar 21;21(6):1139-1149 [PMID: 33533390]
  18. Sci Adv. 2022 Jan 21;8(3):eabg6383 [PMID: 35061540]
  19. J Biol Chem. 1979 Jun 10;254(11):4764-71 [PMID: 220260]
  20. Oncoimmunology. 2018 Dec 12;8(3):1553477 [PMID: 30723584]
  21. Sci Rep. 2019 Apr 17;9(1):6199 [PMID: 30996291]
  22. Cancer Cell Int. 2019 Jan 14;19:16 [PMID: 30651721]
  23. Drug News Perspect. 2010 May;23(4):257-64 [PMID: 20520854]
  24. Cancer Res. 2013 Oct 15;73(20):6164-74 [PMID: 24130112]
  25. Nat Rev Cancer. 2011 Jan;11(1):9-22 [PMID: 21160525]
  26. Cancers (Basel). 2020 May 06;12(5): [PMID: 32384738]
  27. Int J Oncol. 2010 Mar;36(3):715-23 [PMID: 20126992]
  28. Microsc Microanal. 2012 Aug;18(4):761-70 [PMID: 22832200]
  29. J Biol Chem. 1980 Jun 10;255(11):5261-3 [PMID: 6102996]
  30. Biomed Opt Express. 2017 Apr 03;8(5):2368-2385 [PMID: 28663879]
  31. Cell Mol Bioeng. 2020 Oct 13;14(2):133-145 [PMID: 33868496]
  32. Head Neck. 2016 Apr;38 Suppl 1:E459-67 [PMID: 25677579]
  33. J Biol Chem. 2002 Jul 12;277(28):24976-82 [PMID: 11997397]
  34. Cells. 2019 Jun 07;8(6): [PMID: 31181618]
  35. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  36. Oral Oncol. 2018 Dec;87:144-151 [PMID: 30527230]
  37. J Biol Chem. 2008 Nov 7;283(45):31183-96 [PMID: 18772142]
  38. Cancer. 2013 Nov 15;119(22):4003-11 [PMID: 23963810]
  39. Nat Rev Cancer. 2011 Jul 22;11(8):573-87 [PMID: 21779009]
  40. Int Rev Cell Mol Biol. 2009;274:1-68 [PMID: 19349035]
  41. Pathol Oncol Res. 2017 Apr;23(2):235-244 [PMID: 27771887]
  42. Int J Biol Markers. 2010 Apr-Jun;25(2):87-92 [PMID: 20544685]
  43. Front Bioeng Biotechnol. 2021 Apr 20;9:644648 [PMID: 33959597]
  44. Int J Cancer. 2016 May 1;138(9):2061-6 [PMID: 26355498]
  45. Int J Oral Sci. 2010 Mar;2(1):5-14 [PMID: 20690413]
  46. Adv Healthc Mater. 2016 Jan 21;5(2):198-204 [PMID: 26610188]
  47. Elife. 2022 Feb 24;11: [PMID: 35200139]
  48. Exp Mol Med. 2019 Jan 16;51(1):1-14 [PMID: 30700700]
  49. Int J Mol Sci. 2021 Apr 27;22(9): [PMID: 33925575]
  50. Cell Oncol (Dordr). 2020 Oct;43(5):877-888 [PMID: 32488852]
  51. FASEB J. 2014 Nov;28(11):4583-90 [PMID: 25077562]
  52. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1271-5 [PMID: 1741380]
  53. Cancer Cell Int. 2020 Dec 22;20(1):599 [PMID: 33353547]
  54. Oral Oncol. 2019 Apr;91:47-55 [PMID: 30926062]
  55. Sci Rep. 2018 Apr 3;8(1):5456 [PMID: 29615678]
  56. EBioMedicine. 2021 Nov;73:103634 [PMID: 34673450]
  57. Sci Adv. 2016 May 27;2(5):e1600200 [PMID: 27386546]
  58. J Fluoresc. 2004 Sep;14(5):649-54 [PMID: 15617271]
  59. Diabetologia. 2008 Nov;51(11):1937-46 [PMID: 18612626]
  60. Sci Rep. 2017 Jun 19;7(1):3792 [PMID: 28630487]

Grants

  1. R01 CA205101/NCI NIH HHS
  2. P30 CA014520/NCI NIH HHS
  3. T32 GM140935/NIGMS NIH HHS
  4. R01 CA211082/NCI NIH HHS
  5. P50 CA278595/NCI NIH HHS
  6. T32 HL007899/NHLBI NIH HHS

MeSH Term

Humans
Macrophage Migration-Inhibitory Factors
Monocytes
Endothelial Cells
Head and Neck Neoplasms
Cell Movement
Cell Line, Tumor
Tumor Microenvironment

Chemicals

Macrophage Migration-Inhibitory Factors

Word Cloud

Created with Highcharts 10.0.0HNCcancercellmigrationmetastasisnecklymphaticmicroenvironmentTMErolefactorheterogeneityheadpatientstumordiseasesystemvitroplatformidentifiednovelinhibitoryMIFcellsobservedpatient-to-patientmetabolicmetabolismCancerRegionalprevalentapproximately50%diagnosisyetunderlyingdriversmechanismsspreadremainunclearcomplexplayscrucialmaintenanceprogressionhowevercontributionlymphaticsremainsunderexploredcreatedprimarypatientderivedmicrophysiologicalincorporatescancer-associated-fibroblastsalongsidespheroidmicrovesselcreateinvestigateScreeningsolublesignalingsecretionmacrophageendothelialconditionedImportantlyalsosimilarclinicalOpticalimagingsingleleveldistinctprofilemigratoryversusnon-migratorydependentmannerAdditionallyreportuniqueincreasingrelianceglycolysisoxidativephosphorylationmulticellularmicrofluidicexpandstoolsavailableexplorebiologymultipleorthogonaloutputsestablishesenoughresolutionvisualizequantifyMicrophysiologicalmodelidentifieslymphaticallysecretedmonocyteHeadMicrofluidicsTumor

Similar Articles

Cited By