Behavioral and cellular responses to circadian disruption and prenatal immune activation in mice.

Tara C Delorme, William Ozell-Landry, Nicolas Cermakian, Lalit K Srivastava
Author Information
  1. Tara C Delorme: Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montréal, QC, H4H 1R3, Canada.
  2. William Ozell-Landry: Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montréal, QC, H4H 1R3, Canada.
  3. Nicolas Cermakian: Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montréal, QC, H4H 1R3, Canada. nicolas.cermakian@mcgill.ca.
  4. Lalit K Srivastava: Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montréal, QC, H4H 1R3, Canada. l.srivastava@mcgill.ca.

Abstract

Most individuals with neurodevelopmental disorders (NDDs), including schizophrenia and autism spectrum disorders, experience disruptions in sleep and circadian rhythms. Epidemiological studies indicate that exposure to prenatal infection increases the risk of developing NDDs. We studied how environmental circadian disruption contributes to NDDs using maternal immune activation (MIA) in Mice, which models prenatal infection. Pregnant dams were injected with viral mimetic poly IC (or saline) at E9.5. Adult poly IC- and saline-exposed offspring were subjected to 4 weeks of each of the following: standard lighting (LD1), constant light (LL) and standard lighting again (LD2). Behavioral tests were conducted in the last 12 days of each condition. poly IC exposure led to significant behavioral differences, including reduced sociability (males only) and deficits in prepulse inhibition. Interestingly, poly IC exposure led to reduced sociability specifically when males were tested after LL exposure. Mice were exposed again to either LD or LL for 4 weeks and microglia were characterized. Notably, poly IC exposure led to increased microglial morphology index and density in dentate gyrus, an effect attenuated by LL exposure. Our findings highlight interactions between circadian disruption and prenatal infection, which has implications in informing the development of circadian-based therapies for individuals with NDDs.

References

  1. Br J Psychiatry. 2012 Apr;200(4):308-16 [PMID: 22194182]
  2. Front Psychiatry. 2017 Nov 16;8:238 [PMID: 29201010]
  3. J Neurosci Res. 2020 Jun;98(6):1137-1149 [PMID: 32215963]
  4. Brain Res. 2012 May 25;1456:72-81 [PMID: 22516109]
  5. Curr Psychiatry Rep. 2018 Mar 5;20(2):9 [PMID: 29504047]
  6. Nat Rev Neurosci. 2018 Aug;19(8):453-469 [PMID: 29934559]
  7. Schizophr Res. 2015 Jan;161(1):102-12 [PMID: 24948485]
  8. Int Rev Psychiatry. 2010;22(5):417-28 [PMID: 21047156]
  9. Nat Rev Neurosci. 2014 Jul;15(7):443-54 [PMID: 24917305]
  10. Immunity. 2020 Feb 18;52(2):222-240 [PMID: 31924476]
  11. Lancet Psychiatry. 2017 Jul;4(7):563-572 [PMID: 28454915]
  12. J Psychiatry Neurosci. 2000 Nov;25(5):446-58 [PMID: 11109296]
  13. J Clin Invest. 2020 Apr 1;130(4):1728-1742 [PMID: 31874107]
  14. Neurosci Biobehav Rev. 2005;29(6):913-47 [PMID: 15964075]
  15. Nature. 2008 May 1;453(7191):102-5 [PMID: 18432195]
  16. Schizophr Bull. 2009 May;35(3):528-48 [PMID: 19223657]
  17. J Autism Dev Disord. 2012 Dec;42(12):2569-84 [PMID: 22466688]
  18. Nat Rev Mol Cell Biol. 2020 Feb;21(2):67-84 [PMID: 31768006]
  19. Psychopharmacology (Berl). 2001 Jul;156(2-3):117-54 [PMID: 11549216]
  20. Nat Protoc. 2007;2(2):322-8 [PMID: 17406592]
  21. Neurosci Res. 2015 Nov;100:1-5 [PMID: 26116891]
  22. J Neural Transm (Vienna). 2023 Mar;130(3):195-205 [PMID: 36370183]
  23. Endocr Rev. 2014 Aug;35(4):648-70 [PMID: 24673196]
  24. Nat Neurosci. 2005 Mar;8(3):267-9 [PMID: 15746913]
  25. Brain Behav Immun. 2021 Mar;93:119-131 [PMID: 33412254]
  26. J Biol Rhythms. 2022 Dec;37(6):655-672 [PMID: 36168739]
  27. Brain Behav Immun. 2012 May;26(4):607-16 [PMID: 22310922]
  28. Neurosci Biobehav Rev. 2020 Jun;113:546-567 [PMID: 32320814]
  29. J Neuroinflammation. 2005 Oct 31;2:24 [PMID: 16259628]
  30. Nutr Neurosci. 2009 Oct;12(5):233-40 [PMID: 19761654]
  31. Biol Psychiatry. 2007 Feb 15;61(4):482-6 [PMID: 16460695]
  32. J Neurosci. 2011 Nov 9;31(45):16064-9 [PMID: 22072657]
  33. J Neurosci. 2003 Jan 1;23(1):297-302 [PMID: 12514227]
  34. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1657-62 [PMID: 21220317]
  35. Transl Psychiatry. 2020 Jan 23;10(1):28 [PMID: 32066704]
  36. Mol Psychiatry. 2012 Dec;17(12):1228-38 [PMID: 22488257]
  37. J Am Acad Child Adolesc Psychiatry. 2017 Jun;56(6):466-474 [PMID: 28545751]
  38. Arch Gen Psychiatry. 1992 Mar;49(3):185-94 [PMID: 1348923]
  39. Curr Protoc Neurosci. 2001 May;Chapter 8:Unit 8.7 [PMID: 18428548]
  40. J Autism Dev Disord. 2013 Nov;43(11):2710-9 [PMID: 23615687]
  41. Neuroscience. 2003;121(2):493-9 [PMID: 14522008]
  42. Neuron. 2022 Nov 2;110(21):3458-3483 [PMID: 36327895]
  43. Eur J Neurosci. 2021 Jun;53(11):3525-3547 [PMID: 33835613]
  44. Glia. 2016 May;64(5):826-39 [PMID: 26847266]
  45. Schizophr Res. 2001 Mar 30;48(2-3):343-9 [PMID: 11295386]
  46. Sleep. 2004 Dec 15;27(8):1453-62 [PMID: 15683134]
  47. J Vis Exp. 2015 Feb 06;(96):e52434 [PMID: 25742564]
  48. Neurosci Biobehav Rev. 2016 Jun;65:185-94 [PMID: 27073049]
  49. Biol Psychiatry. 2014 Feb 15;75(4):307-15 [PMID: 23938317]
  50. Ann Neurol. 2005 Jan;57(1):67-81 [PMID: 15546155]
  51. Am J Psychiatry. 2016 Jan;173(1):44-52 [PMID: 26472628]
  52. Brain Behav Immun. 2013 Nov;34:159-63 [PMID: 24012645]
  53. Curr Psychiatry Rep. 2020 Jan 18;22(2):7 [PMID: 31955278]
  54. Brain Behav Immun. 2015 Feb;44:100-5 [PMID: 25218900]
  55. Arch Gen Psychiatry. 2004 Aug;61(8):774-80 [PMID: 15289276]
  56. BMC Med. 2004 Apr 28;2:13 [PMID: 15115547]
  57. Behav Brain Res. 2015 May 1;284:58-68 [PMID: 25677649]
  58. Schizophr Res. 2016 Jul;174(1-3):17-23 [PMID: 27132483]
  59. Nat Med. 2017 Sep 8;23(9):1018-1027 [PMID: 28886007]
  60. PLoS Biol. 2010 Nov 02;8(11):e1000527 [PMID: 21072242]
  61. J Biol Rhythms. 2022 Feb;37(1):3-28 [PMID: 34969316]
  62. Trends Immunol. 2022 Mar;43(3):230-244 [PMID: 35131181]
  63. Mol Psychiatry. 2018 Mar;23(3):759-766 [PMID: 28607458]
  64. Scand J Work Environ Health. 2010 Mar;36(2):163-79 [PMID: 20126969]
  65. Mol Autism. 2020 Sep 10;11(1):69 [PMID: 32912338]
  66. Front Mol Neurosci. 2018 Feb 08;11:13 [PMID: 29472840]
  67. Nat Neurosci. 2019 Mar;22(3):333-334 [PMID: 30796420]
  68. Transl Psychiatry. 2017 May 9;7(5):e1120 [PMID: 28485733]
  69. Front Neurosci. 2022 Apr 12;16:834058 [PMID: 35495047]
  70. Annu Rev Physiol. 2010;72:517-49 [PMID: 20148687]
  71. J Biol Rhythms. 2020 Aug;35(4):325-339 [PMID: 32498652]
  72. J Neurosci. 2011 Nov 9;31(45):16094-101 [PMID: 22072661]
  73. Scand J Work Environ Health. 2010 Mar;36(2):96-108 [PMID: 20087536]
  74. BMC Med Genet. 2017 Jan 31;18(1):9 [PMID: 28137251]
  75. J Sleep Res. 2008 Jun;17(2):197-206 [PMID: 18482108]
  76. Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5102-5107 [PMID: 30792350]
  77. Brain Behav Immun. 2008 May;22(4):469-86 [PMID: 18023140]
  78. Brain Behav Immun. 2015 Mar;45:171-9 [PMID: 25433170]
  79. FASEB J. 2013 Apr;27(4):1721-32 [PMID: 23303208]
  80. Neurobiol Learn Mem. 2017 May;141:150-156 [PMID: 28434949]
  81. Transl Psychiatry. 2019 Mar 28;9(1):124 [PMID: 30923308]
  82. Am J Psychol. 1970 Mar;83(1):103-11 [PMID: 5465190]
  83. J Vis Exp. 2011 Feb 25;(48): [PMID: 21403628]

Grants

  1. PJT-153299/CIHR

MeSH Term

Pregnancy
Female
Male
Humans
Mice
Animals
Prenatal Exposure Delayed Effects
Poly I-C
Prepulse Inhibition
Schizophrenia
Behavior, Animal
Disease Models, Animal

Chemicals

Poly I-C

Word Cloud

Created with Highcharts 10.0.0exposureNDDscircadianprenatalpolyICLLinfectiondisruptionledindividualsdisordersincludingimmuneactivationmice4 weeksstandardlightingBehavioralreducedsociabilitymalesneurodevelopmentalschizophreniaautismspectrumexperiencedisruptionssleeprhythmsEpidemiologicalstudiesindicateincreasesriskdevelopingstudiedenvironmentalcontributesusingmaternalMIAmodelsPregnantdamsinjectedviralmimeticsalineE95AdultIC-saline-exposedoffspringsubjectedfollowing:LD1constantlightLD2testsconductedlast12 daysconditionPolysignificantbehavioraldifferencesdeficitsprepulseinhibitionInterestinglyspecificallytestedMiceexposedeitherLDmicrogliacharacterizedNotablyincreasedmicroglialmorphologyindexdensitydentategyruseffectattenuatedfindingshighlightinteractionsimplicationsinformingdevelopmentcircadian-basedtherapiescellularresponses

Similar Articles

Cited By

No available data.