Enzymatic Electrochemical/Fluorescent Nanobiosensor for Detection of Small Chemicals.

Hye Kyu Choi, Jinho Yoon
Author Information
  1. Hye Kyu Choi: Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA. ORCID
  2. Jinho Yoon: Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea.

Abstract

The detection of small molecules has attracted enormous interest in various fields, including the chemical, biological, and healthcare fields. In order to achieve such detection with high accuracy, up to now, various types of biosensors have been developed. Among those biosensors, enzymatic biosensors have shown excellent sensing performances via their highly specific enzymatic reactions with small chemical molecules. As techniques used to implement the sensing function of such enzymatic biosensors, electrochemical and fluorescence techniques have been mostly used for the detection of small molecules because of their advantages. In addition, through the incorporation of nanotechnologies, the detection property of each technique-based enzymatic nanobiosensors can be improved to measure harmful or important small molecules accurately. This review provides interdisciplinary information related to developing enzymatic nanobiosensors for small molecule detection, such as widely used enzymes, target small molecules, and electrochemical/fluorescence techniques. We expect that this review will provide a broad perspective and well-organized roadmap to develop novel electrochemical and fluorescent enzymatic nanobiosensors.

Keywords

References

  1. Biosens Bioelectron. 2019 May 15;133:205-214 [PMID: 30939397]
  2. J Am Chem Soc. 2002 Feb 20;124(7):1138-9 [PMID: 11841260]
  3. Sens Int. 2022;3:100169 [PMID: 35252890]
  4. Colloids Surf B Biointerfaces. 2020 Nov;195:111228 [PMID: 32668372]
  5. Nanomaterials (Basel). 2021 May 01;11(5): [PMID: 34062948]
  6. Nano Lett. 2020 Oct 14;20(10):7100-7107 [PMID: 32809833]
  7. ACS Appl Mater Interfaces. 2021 Oct 6;13(39):46440-46450 [PMID: 34547887]
  8. Chem Soc Rev. 2021 Sep 7;50(17):9391-9429 [PMID: 34232230]
  9. Anal Chim Acta. 2020 Dec 1;1139:198-221 [PMID: 33190704]
  10. Anal Chim Acta. 2021 Aug 8;1172:338677 [PMID: 34119024]
  11. Anal Chim Acta. 2012 Nov 19;754:91-8 [PMID: 23140959]
  12. Biosensors (Basel). 2022 Jul 12;12(7): [PMID: 35884322]
  13. Biosens Bioelectron. 2020 May 15;156:112145 [PMID: 32174562]
  14. Biosensors (Basel). 2021 Oct 21;11(11): [PMID: 34821626]
  15. ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25387-25396 [PMID: 28703007]
  16. Chem Asian J. 2012 Mar 5;7(3):466-75 [PMID: 22279004]
  17. Biosensors (Basel). 2022 Jul 22;12(8): [PMID: 35892453]
  18. Biosens Bioelectron. 2015 Apr 15;66:89-94 [PMID: 25460887]
  19. Acc Chem Res. 2008 Feb;41(2):315-26 [PMID: 18205323]
  20. Chem Rev. 2021 Feb 10;121(3):1077-1129 [PMID: 33439632]
  21. Angew Chem Int Ed Engl. 2019 Sep 2;58(36):12355-12368 [PMID: 30990933]
  22. Curr Opin Biotechnol. 2001 Feb;12(1):35-40 [PMID: 11167070]
  23. Nanomaterials (Basel). 2022 Nov 24;12(23): [PMID: 36500794]
  24. Biosensors (Basel). 2022 Oct 25;12(11): [PMID: 36354431]
  25. Anal Chim Acta. 2020 Feb 1;1096:34-43 [PMID: 31883589]
  26. Biosens Bioelectron. 2015 Aug 15;70:376-91 [PMID: 25841121]
  27. Nanoscale Adv. 2019 Oct 31;1(12):4560-4577 [PMID: 36133111]
  28. RSC Adv. 2022 Sep 6;12(39):25342-25353 [PMID: 36199318]
  29. Acc Chem Res. 2009 May 19;42(5):609-19 [PMID: 19267458]
  30. Sensors (Basel). 2020 Jan 11;20(2): [PMID: 31940833]
  31. Chem Sci. 2022 Jul 20;13(30):8727-8743 [PMID: 35975162]
  32. Chem Rev. 2019 Nov 27;119(22):11718-11760 [PMID: 31724399]
  33. Chem Soc Rev. 2021 Jan 21;50(2):702-734 [PMID: 33475109]
  34. Angew Chem Int Ed Engl. 2021 Apr 26;60(18):9891-9896 [PMID: 33590604]
  35. Int J Mol Sci. 2021 Apr 29;22(9): [PMID: 33947115]
  36. Front Chem. 2019 Apr 24;7:228 [PMID: 31069213]
  37. Molecules. 2021 Jul 27;26(15): [PMID: 34361678]
  38. Anal Chem. 2021 May 18;93(19):7275-7282 [PMID: 33957044]
  39. Nat Commun. 2022 May 25;13(1):2919 [PMID: 35614105]
  40. J Nanosci Nanotechnol. 2015 Aug;15(8):5537-42 [PMID: 26369114]
  41. ACS Nano. 2022 Sep 27;16(9):13869-13883 [PMID: 36099649]
  42. Mater Sci Eng C Mater Biol Appl. 2021 Mar;122:111916 [PMID: 33641909]
  43. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Oct 5;259:119889 [PMID: 34015600]
  44. Trends Biochem Sci. 2001 Apr;26(4):209-10 [PMID: 11295538]
  45. Nanomaterials (Basel). 2021 Aug 25;11(9): [PMID: 34578486]
  46. Anal Chem. 2021 Feb 16;93(6):3130-3137 [PMID: 33535742]
  47. Biosens Bioelectron. 2022 Dec 15;218:114768 [PMID: 36240630]
  48. Bioconjug Chem. 2008 Sep;19(9):1864-70 [PMID: 18693760]
  49. PLoS Biol. 2018 Dec 31;16(12):e3000077 [PMID: 30596633]
  50. Clin Chim Acta. 2022 Jan 1;524:154-163 [PMID: 34774544]
  51. Anal Biochem. 2021 Nov 15;633:114406 [PMID: 34619101]
  52. Colloids Surf B Biointerfaces. 2020 Feb;186:110683 [PMID: 31816461]
  53. Biosens Bioelectron. 2019 Sep 1;140:111343 [PMID: 31150985]
  54. Analyst. 2018 Sep 10;143(18):4221-4229 [PMID: 30090910]
  55. Nanoscale. 2011 Jan;3(1):142-53 [PMID: 20938522]
  56. ACS Sens. 2021 Dec 24;6(12):4515-4525 [PMID: 34825565]
  57. Anal Biochem. 2022 Oct 1;654:114736 [PMID: 35588855]
  58. Biosens Bioelectron. 2019 Aug 1;138:111314 [PMID: 31096114]
  59. Biochemistry. 1982 May 25;21(11):2661-6 [PMID: 6284205]
  60. Angew Chem Int Ed Engl. 2020 Jun 2;59(23):8786-8798 [PMID: 31901003]
  61. Sensors (Basel). 2016 May 30;16(6): [PMID: 27249001]
  62. Bioelectrochemistry. 2022 Jun;145:108071 [PMID: 35074730]
  63. Materials (Basel). 2020 Jan 09;13(2): [PMID: 31936530]
  64. Biosens Bioelectron. 2019 Sep 15;141:111451 [PMID: 31252261]
  65. Anal Chem. 2021 Jun 16;: [PMID: 34133127]
  66. ACS Omega. 2022 Nov 23;7(48):44372-44382 [PMID: 36506151]
  67. Biotechnol Adv. 2009 Jul-Aug;27(4):489-501 [PMID: 19374943]
  68. ACS Nano. 2022 Apr 26;16(4):5764-5777 [PMID: 35362957]
  69. Sci Rep. 2022 Apr 28;12(1):6953 [PMID: 35484380]
  70. Chem Commun (Camb). 2021 Jul 28;57(59):7215-7231 [PMID: 34223844]
  71. Chem Commun (Camb). 2015 Jun 4;51(44):9161-4 [PMID: 25947336]
  72. Appl Microbiol Biotechnol. 2008 Apr;78(6):927-38 [PMID: 18330562]
  73. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Mar 5;248:119285 [PMID: 33310613]
  74. Biosens Bioelectron. 2017 Jul 15;93:14-20 [PMID: 27955988]
  75. Biosens Bioelectron. 2021 Jan 1;171:112709 [PMID: 33075724]
  76. Biosens Bioelectron. 2021 Mar 15;176:112947 [PMID: 33412430]
  77. J Mater Chem B. 2020 Aug 26;8(33):7303-7318 [PMID: 32647855]
  78. Biosens Bioelectron. 2020 Dec 15;170:112670 [PMID: 33045666]
  79. Anal Bioanal Chem. 2008 Jul;391(5):1555-67 [PMID: 18414837]
  80. Biosens Bioelectron. 2022 Mar 1;199:113863 [PMID: 34894557]
  81. Chemosphere. 2022 Jan;287(Pt 2):132187 [PMID: 34509007]
  82. Chem Sci. 2022 May 4;13(22):6715-6731 [PMID: 35756504]
  83. Colloids Surf B Biointerfaces. 2015 Dec 1;136:853-8 [PMID: 26539811]
  84. Appl Biochem Biotechnol. 2022 Aug;194(8):3765-3778 [PMID: 35522361]

Grants

  1. T32EB005583/NIH HHS

MeSH Term

Nanotechnology
Biosensing Techniques
Electrochemical Techniques

Word Cloud

Created with Highcharts 10.0.0smallenzymaticmoleculesdetectionbiosensorstechniquesusednanobiosensorsvariousfieldschemicalsensingelectrochemicalfluorescencereviewattractedenormousinterestincludingbiologicalhealthcareorderachievehighaccuracynowtypesdevelopedAmongshownexcellentperformancesviahighlyspecificreactionsimplementfunctionmostlyadvantagesadditionincorporationnanotechnologiespropertytechnique-basedcanimprovedmeasureharmfulimportantaccuratelyprovidesinterdisciplinaryinformationrelateddevelopingmoleculewidelyenzymestargetelectrochemical/fluorescenceexpectwillprovidebroadperspectivewell-organizedroadmapdevelopnovelfluorescentEnzymaticElectrochemical/FluorescentNanobiosensorDetectionSmallChemicalselectrochemistrybiosensornanobiosensor

Similar Articles

Cited By