Time Series of Counts under Censoring: A Bayesian Approach.

Isabel Silva, Maria Eduarda Silva, Isabel Pereira, Brendan McCabe
Author Information
  1. Isabel Silva: Faculdade de Engenharia, Universidade do Porto, CIDMA, 4200-465 Porto, Portugal. ORCID
  2. Maria Eduarda Silva: Faculdade de Economia, Universidade do Porto, LIADD-INESC TEC, 4200-464 Porto, Portugal. ORCID
  3. Isabel Pereira: Departamento de Matemática, Universidade de Aveiro, CIDMA, 3810-193 Aveiro, Portugal. ORCID
  4. Brendan McCabe: School of Management, University of Liverpool, Liverpool L69 3BX, UK.

Abstract

Censored data are frequently found in diverse fields including environmental monitoring, medicine, economics and social sciences. Censoring occurs when observations are available only for a restricted range, e.g., due to a detection limit. Ignoring censoring produces biased estimates and unreliable statistical inference. The aim of this work is to contribute to the modelling of time series of counts under censoring using convolution closed infinitely divisible (CCID) models. The emphasis is on estimation and inference problems, using Bayesian approaches with Approximate Bayesian Computation (ABC) and Gibbs sampler with Data Augmentation (GDA) algorithms.

Keywords

References

  1. Biometrics. 2001 Mar;57(1):22-33 [PMID: 11252602]
  2. Stat Appl Genet Mol Biol. 2013 May 06;12(2):129-41 [PMID: 23652634]
  3. Stat Med. 2016 Nov 20;35(26):4875-4890 [PMID: 27396957]
  4. Stat Med. 2017 Dec 30;36(30):4873-4892 [PMID: 29067731]

Grants

  1. UIDB/04106/2020/Fundação para a Ciência e Tecnologia
  2. LA/P/0063/2020/Fundação para a Ciência e Tecnologia

Word Cloud

Created with Highcharts 10.0.0BayesiancensoringinferencetimeseriesusingconvolutionclosedinfinitelydivisibleestimationCensoreddatafrequentlyfounddiversefieldsincludingenvironmentalmonitoringmedicineeconomicssocialsciencesCensoringoccursobservationsavailablerestrictedrangeegduedetectionlimitIgnoringproducesbiasedestimatesunreliablestatisticalaimworkcontributemodellingcountsCCIDmodelsemphasisproblemsapproachesApproximateComputationABCGibbssamplerDataAugmentationGDAalgorithmsTimeSeriesCountsCensoring:ApproachPoissonINAR1modelcensored

Similar Articles

Cited By