Flexible Solution-Processable Black-Phosphorus-Based Optoelectronic Memristive Synapses for Neuromorphic Computing and Artificial Visual Perception Applications.

Dayanand Kumar, Hanrui Li, Uttam Kumar Das, Abdul Momin Syed, Nazek El-Atab
Author Information
  1. Dayanand Kumar: Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  2. Hanrui Li: Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  3. Uttam Kumar Das: Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  4. Abdul Momin Syed: Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  5. Nazek El-Atab: Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. ORCID

Abstract

Being renowned for operating with visible-light pulses and electrical signals, optoelectronic memristive synaptic devices have excellent potential for neuromorphic computing systems and artificial visual information processing. Here, a flexible back-end-of-line-compatible optoelectronic memristor based on a solution-processable black phosphorus/HfO bilayer with excellent synaptic features, toward biomimetic retinas is presented. The device shows highly stable synaptic features such as long-term potentiation (LTP) and long-term depression (LTD) for repetitive 1000 epochs, having 400 conductance pulses, each. The device presents advanced synaptic features in terms of long-term memory (LTM)/short term memory (STM), as well as learning-forgetting-relearning when visible light is induced on it. These advanced synaptic features can improve the information processing abilities for neuromorphic applications. Interestingly, the STM can be converted into LTM by adjusting the intensity of light and illumination time. Using the light-induced characteristics of the device, a 6 × 6 synaptic array is developed to exhibit possible use in artificial visual perception. Moreover, the devices are flexed using a silicon back-etching process. The resulting flexible devices demonstrate stable synaptic features when bent down to 1 cm radius. These multifunctional features in a single memristive cell make it highly suitable for optoelectronic memory storage, neuromorphic computing, and artificial visual perception applications.

Keywords

References

  1. T. Ahmed, M. Tahir, M. X. Low, Y. Ren, S. A. Tawfik, E. L. H. Mayes, S. Kuriakose, S. Nawaz, M. J. S. Spencer, H. Chen, M. Bhaskaran, S. Sriram, S. Walia, Adv. Mater. 2021, 33, 2004207.
  2. B. Dang, K. Liu, X. Wu, Z. Yang, L. Xu, Y. Yang, R. Huang, Adv. Mater. 2022, 34, 2200302.
  3. M. D. Tran, H. Kim, J. S. Kim, M. H. Doan, T. K. Chau, Q. A. Vu, J. H. Kim, Y. H. Lee, Adv. Mater. 2019, 31, 1807075.
  4. Q. Wang, Y. Wen, K. Cai, R. Cheng, L. Yin, Y. Zhang, J. Li, Z. Wang, F. Wang, F. Wang, T. A. Shifa, C. Jiang, H. Yang, J. He, Sci. Adv. 2018, 4, eaap7916.
  5. F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang, Z. Lin, S. Yu, J. Kang, H. S. P. Wong, Y. Chai, Nat. Nanotechnol. 2019, 14, 776.
  6. B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri, D. Pandey, D. Dev, A. Krishnaprasad, E. Barrios, A. Towers, A. Gesquiere, L. Tetard, T. Roy, J. Thomas, Sci. Adv. 2020, 6, eaay5225.
  7. S. M. Kwon, S. W. Cho, M. Kim, J. S. Heo, Y. H. Kim, S. K. Park, Adv. Mater. 2019, 31, 1906433.
  8. L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang, Q. Zhang, L. Shu, X. Qiu, M. Kam, A. Javey, Z. Fan, Nature 2020, 581, 278.
  9. C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang, X. Chen, Adv. Mater. 2020, 32, 1902434.
  10. F. Zhou, Y. Chai, Nat. Electron. 2020, 3, 664.
  11. H. Jang, C. Liu, H. Hinton, M. H. Lee, H. Kim, M. Seol, H. J. Shin, S. Park, D. Ham, Adv. Mater. 2020, 32, 2002431.
  12. J. Lee, B. Yoo, H. Lee, G. D. Cha, H. S. Lee, Y. Cho, S. Y. Kim, H. Seo, W. Lee, D. Son, M. Kang, H. M. Kim, Y. I. Park, T. Hyeon, D. H. Kim, Adv. Mater. 2017, 29, 1603169.
  13. Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv, X. Xing, Y. Zhou, B. Zhang, C. Su, Q. Liao, S. T. Han, Adv. Funct. Mater. 2021, 31, 2100144.
  14. M. Lee, W. Lee, S. Choi, J. W. Jo, J. Kim, S. K. Park, Y. H. Kim, Adv. Mater. 2017, 29, 1700951.
  15. T. Ahmed, S. Kuriakose, E. L. H. Mayes, R. Ramanathan, V. Bansal, M. Bhaskaran, S. Sriram, S. Walia, Small 2019, 15, 1900966.
  16. S. Lee, R. Peng, C. Wu, M. Li, Nat. Commun. 2022, 13, 1485.
  17. C. Y. Wang, S. J. Liang, S. Wang, P. Wang, L. Zhu'an, Z. Wang, A. Gao, C. Pan, C. Liu, J. Liu, H. Yang, X. Liu, W. Song, C. Wang, B. Cheng, X. Wang, K. Chen, Z. Wang, K. Watanabe, T. Taniguchi, J. Joshua Yang, F. Miao, Sci. Adv. 2020, 6, eaba6173.
  18. L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, T. Mueller, Nature 2020, 579, 62.
  19. Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu, P. Zhou, Nat. Nanotechnol. 2022, 17, 27.
  20. L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo, S. Zheng, S. Lee, W. J. Yu, B. S. Kong, H. Yang, Sci. Adv. 2021, 7, eabg1455.
  21. H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen, X. Chen, J. Shang, W. D. Lu, Y. Wu, R. W. Li, Adv. Mater. 2015, 27, 2797.
  22. X. Shan, C. Zhao, X. Wang, Z. Wang, S. Fu, Y. Lin, T. Zeng, X. Zhao, H. Xu, X. Zhang, Y. Liu, Adv. Sci. 2022, 9, 2104632.
  23. K. Palczewski, Invest Ophthalmol Vis Sci 2014, 55, 6651.
  24. X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou, H. Li, Y. Zhou, F. Pan, S. T. Han, Nano Energy 2020, 78, 105246.
  25. E. Flores, J. R. Ares, A. C. Gomez, M. Barawi, I. J. Ferrer, C. Sanchez, Appl. Phys. Lett. 2015, 106, 022102.
  26. S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. 2007, 46, 4028.
  27. J. E. F. S. Rodrigues, J. Gainza, F. S.- Sanchez, C. Lopez, O. J. Dura, N. Nemes, J. L. Martinez, Y. Huttel, F. Fauth, M. T. F.- Diaz, N. Biskup, J. A. Alonso, Inorg. Chem. 2020, 59, 14932.
  28. D. G. F. David, C. Godet, F. O. L. Johansson, A. Lindblad, Appl. Surf. Sci. 2020, 505, 144385.
  29. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W. D. Lu, Nat. Commun. 2014, 5, 4232.
  30. D. Kumar, R. Aluguri, U. Chand, T.-Y. Tseng, Appl. Phys. Lett. 2017, 110, 203102.
  31. L. Goux, A. Belmonte, U. Celano, J. Woo, S. Folkersma, C. Y. Chen, A. Redolfi, A. Fantini, R. Degraeve, S. Clima, W. Vandervorst, M. Jurczak,in 2016 IEEE Symp. on VLSI Technology, IEEE, Piscataway, NJ, USA 2016, 1.
  32. X. Yan, C. Qin, C. Lu, J. Zhao, R. Zhao, D. Ren, Z. Zhou, H. Wang, J. Wang, L. Zhang, X. Li, Y. Pei, G. Wang, Q. Zhao, K. Wang, Z. Xiao, H. Li, ACS Appl. Mater. Interfaces 2019, 11, 48029.
  33. Y.-S. Chen, T. Y. Wu, P.-J. Tzeng, P.-S. Chen, H.-Y. Lee, C.-H. Lin, F. Chen, M.-J. Tsai, in 2009 Int. Symp. on VLSI Technology, Systems, and Applications, IEEE, Piscataway, NJ, USA 2009, pp. 37-38.
  34. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, M.-J. Tsai, 2008 IEEE Int. Electron Devices Meeting, IEEE, Piscataway, NJ, USA 2008.
  35. S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. S. Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, J. Wu, Nat. Commun. 2015, 6, 8573.
  36. M. A. Panzer, M. Shandalov, J. A. Rowlette, Y. Oshima, Y. W. Chen, P. C. McIntyre, K. E. Goodson, IEEE Electron Device Lett. 2009, 30, 1269.
  37. K. Park, J. S. Lee, RSC Adv. 2016, 6, 21736.
  38. S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Y. Chen, H. Yeon, S. Yu, J. Kim, Nat. Mater. 2018, 17, 335.
  39. M. Kudo, M. Arita, Y. Ohno, Y. Takahashi, Appl. Phys. Lett. 2014, 105, 173504.
  40. T. L. Tsai, F. S. Jiang, C. H. Ho, C. H. Lin, T. Y. Tseng, IEEE Electron Device Lett. 2016, 37, 1284.
  41. P.-Y. Chen, L. Gao, S. Yu, IEEE Trans. Multi-Scale Comput. 2016, 2, 257.
  42. I. Hubara, M. Courbariaux, D. Soudry, R. E. Yaniv, Y. Bengio, J. Mach. Learn. Res. 2017, 18, 6869.
  43. M. Kumar, S. Abbas, J. Kim, ACS Appl. Mater. Interfaces 2018, 10, 34370.
  44. D. Kumar, L. B. Keong, N. Elatab, T.-Y. Tseng, IEEE Electron Device Lett. 2022, 43, 2093.
  45. Y. Lin, T. Zeng, H. Xu, Z. Wang, X. Zhao, W. Liu, J. Ma, Y. Liu, Adv. Electron. Mater. 2018, 4, 1800373.
  46. D.-C. Hu, R. Yang, L. Jiang, X. Guo, ACS Appl. Mater. Interfaces 2018, 10, 6463.
  47. J.-T. Yang, C. Ge, J.-Y. Du, H.-Y. Huang, M. He, C. Wang, H.-B. Lu, G.-Z. Yang, K.-J. Jin, Adv. Mater. 2018, 4, 1801548.
  48. W. Wang, S. Gao, Y. Wang, Y. Li, W. Yue, H. Niu, F. Yin, Y. Guo, G. Shen, Adv. Sci. 2022, 9, 2105577.
  49. D. Lee, E. Hwang, Y. Lee, Y. Choi, J. S. Kim, S. Lee, J. H. Cho, Adv. Mater. 2016, 28, 9196.
  50. X. Shan, C. Zhao, Y. Lin, J. Liu, X. Zhang, Y. Tao, C. Wang, X. Zhao, Z. Wang, H. Xu, Y. Liu, Appl. Phys. Lett. 2022, 121, 263501.
  51. F. Zhou, J. Chen, X. Tao, X. Wang, Y. Chai, Research 2019, 9490413.
  52. W. Wang, S. Gao, Y. Li, W. Yue, H. Kan, C. Zhang, Z. Lou, L. Wang, G. Shen, Adv. Funct. Mater. 2021, 31, 2101201.
  53. R. C. Atkinson, R. M. Shiffrin, in The Psychology of Learning and Motivation: Advances in Research and Theory (Eds: K. W. Spence, J. T Spence), Academic Press, New York, USA 1968, 89.
  54. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, M. Aono, Nat. Mater. 2011, 10, 591.
  55. R. T. Zacks, L. Hasher L, K. Z. H. Li, in The handbook of aging and cognition (Eds: F. I. M. Craik, T. A. Salthouse), Lawrence Erlbaum Associates, Mahwah, NJ, USA 2000, 293.
  56. A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhanen, M. J. Bailey, Nat. Mater. 2015, 14, 199.
  57. T. Paul, T. Ahmed, K. Kanhaiya Tiwari, C. Singh Thakur, A. Ghosh, 2D Mater. 2019, 6, 045008.
  58. S. G. Yi, M. U. Park, S. H. Kim, C. J. Lee, J. Kwon, G. H. Lee, K. H. Yoo, ACS Appl. Mater. Interfaces 2018, 10, 31480.
  59. W. Hu, J. Jiang, D. Xie, B. Liu, J. Yang, J. He, J. Mater. Chem. C 2019, 7, 682.
  60. X. Wang, H. Tian, S. Shen, J. Wang, Y. Li, Y. Pang, Y. Yang, T.-L. Ren, IEEE Trans. Electron Devices 2018, 65, 3543.
  61. Z. Zhang, T. Li, Y. Wu, Y. Jia, C. Tan, X. Xu, G. Wang, J. Lv, W. Zhang, Y. He, J. Pei, C. Ma, G. Li, H. Xu, L. Shi, H. Peng, H. Li, Adv. Mater. 2019, 31, 1805769.
  62. S. Wang, X. Hou, L. Liu, J. Li, Y. Shan, S. Wu, D. W. Zhang, P. Zhou, Research 2019, 2019, 1618798.
  63. Z. D. Luo, X. Xia, M. M. Yang, N. R. Wilson, A. Gruverman, M. Alexe, ACS Nano 2020, 14, 746.
  64. Z. Ni, Y. Wang, L. Liu, S. Zhao, Y. Xu, X. Pi, D. Yang, in 2018 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA December 2018.
  65. S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D. W. Zhang, H. Zhou, X. Wang, P. Zhou, Adv. Mater. 2019, 31, 1806227.
  66. W. Huh, S. Jang, J. Y. Lee, D. Lee, J. M. Lee, H. G. Park, J. C. Kim, H. Y. Jeong, G. Wang, C. H. Lee, Adv. Mater. 2018, 30, 1801447.
  67. H. K. He, R. Yang, H. M. Huang, F. F. Yang, Y. Z. Wu, J. Shaibo, X. Guo, Nanoscale 2020, 12, 380.
  68. Y. Wang, J. Yang, Z. Wang, J. Chen, Q. Yang, Z. Lv, Y. Zhou, Y. Zhai, Z. Li, S. T. Han, Small 2019, 15, 1805431.
  69. C. He, J. Tang, D. S. Shang, J. Tang, Y. Xi, S. Wang, N. Li, Q. Zhang, J. K. Lu, Z. Wei, Q. Wang, C. Shen, J. Li, S. Shen, J. Shen, R. Yang, D. Shi, H. Wu, S. Wang, G. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 11945.
  70. H. Tian, X. Cao, Y. Xie, X. Yan, A. Kostelec, D. DiMarzio, C. Chang, L. D. Zhao, W. Wu, J. Tice, J. J. Cha, J. Guo, H. Wang, ACS Nano 2017, 11, 7156.
  71. X. Xiong, J. Kang, Q. Hu, C. Gu, T. Gao, X. Li, Y. Wu, Adv. Funct. Mater. 2020, 30, 1909645.
  72. R. A. John, N. Tiwari, C. Yaoyi, N. T. Ankit, M. Kulkarni, A. Nirmal, A. C. Nguyen, A. Basu, N. Mathews, ACS Nano 2018, 12, 11263.

Grants

  1. ORA-2022-5314/King Abdullah University of Science and Technology

MeSH Term

Visual Perception
Light
Cognition
Phosphorus
Synapses

Chemicals

Phosphorus

Word Cloud

Created with Highcharts 10.0.0synapticfeaturesmemoryneuromorphicartificialvisuallong-termoptoelectronicdevicescomputingdevicepulsesmemristiveexcellentsystemsinformationprocessingflexiblehighlystableadvancedLTMSTMlightcanapplicationsperceptionrenownedoperatingvisible-lightelectricalsignalspotentialback-end-of-line-compatiblememristorbasedsolution-processableblackphosphorus/HfObilayertowardbiomimeticretinaspresentedshowspotentiationLTPdepressionLTDrepetitive1000epochs400conductancepresentsterms/shorttermwelllearning-forgetting-relearningvisibleinducedimproveabilitiesInterestinglyconvertedadjustingintensityilluminationtimeUsinglight-inducedcharacteristics6 × 6arraydevelopedexhibitpossibleuseMoreoverflexedusingsiliconback-etchingprocessresultingdemonstratebent1 cmradiusmultifunctionalsinglecellmakesuitablestorageFlexibleSolution-ProcessableBlack-Phosphorus-BasedOptoelectronicMemristiveSynapsesNeuromorphicComputingArtificialVisualPerceptionApplicationsmemristorsshort-term

Similar Articles

Cited By (8)