Supramolecular Peptide Nanostructures Regulate Catalytic Efficiency and Selectivity.

Zhao Li, Soumil Y Joshi, Yin Wang, Sanket A Deshmukh, John B Matson
Author Information
  1. Zhao Li: Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, USA.
  2. Soumil Y Joshi: Department of Chemical Engineering, Virginia Tech, Blacksburg, VA-24061, USA. ORCID
  3. Yin Wang: Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
  4. Sanket A Deshmukh: Department of Chemical Engineering, Virginia Tech, Blacksburg, VA-24061, USA. ORCID
  5. John B Matson: Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, USA. ORCID

Abstract

We report three constitutionally isomeric tetrapeptides, each comprising one glutamic acid (E) residue, one histidine (H) residue, and two lysine (K ) residues functionalized with side-chain hydrophobic S-aroylthiooxime (SATO) groups. Depending on the order of amino acids, these amphiphilic peptides self-assembled in aqueous solution into different nanostructures:nanoribbons, a mixture of nanotoroids and nanoribbons, or nanocoils. Each nanostructure catalyzed hydrolysis of a model substrate, with the nanocoils exhibiting the greatest rate enhancement and the highest enzymatic efficiency. Coarse-grained molecular dynamics simulations, analyzed with unsupervised machine learning, revealed clusters of H residues in hydrophobic pockets along the outer edge of the nanocoils, providing insight for the observed catalytic rate enhancement. Finally, all three supramolecular nanostructures catalyzed hydrolysis of the l-substrate only when a pair of enantiomeric Boc-l/d-Phe-ONp substrates were tested. This study highlights how subtle molecular-level changes can influence supramolecular nanostructures, and ultimately affect catalytic efficiency.

Keywords

References

  1. ACS Appl Bio Mater. 2022 May 3;: [PMID: 35505454]
  2. Org Biomol Chem. 2008 Aug 7;6(15):2796-803 [PMID: 18633538]
  3. PLoS One. 2015 Dec 09;10(12):e0143948 [PMID: 26650386]
  4. Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6191-6196 [PMID: 28566494]
  5. Mater Chem Front. 2020 Oct 1;4(10):3022-3031 [PMID: 33163198]
  6. J Am Chem Soc. 2018 Nov 7;140(44):14945-14951 [PMID: 30369241]
  7. J Am Chem Soc. 2020 Nov 25;142(47):20058-20065 [PMID: 33186019]
  8. ACS Nano. 2014 Nov 25;8(11):11715-23 [PMID: 25375351]
  9. J Chem Phys. 2016 Nov 21;145(19):199902 [PMID: 27875896]
  10. ACS Appl Bio Mater. 2019 Nov 18;2(11):5093-5098 [PMID: 33283175]
  11. Chem Commun (Camb). 2015 Aug 25;51(66):13131-4 [PMID: 26189449]
  12. J Phys Chem B. 2011 May 12;115(18):5415-24 [PMID: 21388153]
  13. ACS Nano. 2022 Aug 23;16(8):12889-12899 [PMID: 35866668]
  14. Science. 1963 Dec 20;142(3599):1533-41 [PMID: 14075684]
  15. ACS Nano. 2019 Jun 25;13(6):7300-7309 [PMID: 31181152]
  16. J Chem Theory Comput. 2008 May;4(5):819-34 [PMID: 26621095]
  17. PLoS One. 2019 Jan 15;14(1):e0210236 [PMID: 30645617]
  18. Nanoscale. 2017 Aug 3;9(30):10773-10783 [PMID: 28722055]
  19. Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14511-14515 [PMID: 28941038]
  20. Biopolymers. 2012;98(3):169-84 [PMID: 22782560]
  21. J Biol Chem. 2005 Apr 22;280(16):15903-11 [PMID: 15703180]
  22. Chem Rev. 1996 Mar 28;96(2):721-758 [PMID: 11848771]
  23. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  24. ACS Catal. 2019 Oct 4;9(10):9265-9275 [PMID: 34094654]
  25. Comput Biol Med. 2015 Apr;59:10-18 [PMID: 25658505]
  26. J Am Chem Soc. 2007 Oct 10;129(40):12082-3 [PMID: 17854188]
  27. Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12412-6 [PMID: 27573584]
  28. Chem Commun (Camb). 2015 May 21;51(41):8574-83 [PMID: 25797909]
  29. Biopolymers. 2010;94(1):1-18 [PMID: 20091874]
  30. Chem Rev. 2002 Jan;102(1):1-27 [PMID: 11782127]
  31. Angew Chem Int Ed Engl. 2020 Oct 19;59(43):18960-18963 [PMID: 32618091]
  32. Org Lett. 2014 Mar 21;16(6):1558-61 [PMID: 24575729]
  33. ChemSusChem. 2018 May 9;11(9):1410-1420 [PMID: 29436773]
  34. Chem Soc Rev. 2004 May 10;33(4):234-45 [PMID: 15103405]
  35. Biomacromolecules. 2019 Feb 11;20(2):1077-1086 [PMID: 30676716]
  36. Biomacromolecules. 2021 May 10;22(5):1835-1855 [PMID: 33843196]
  37. Biomacromolecules. 2020 Mar 9;21(3):1171-1178 [PMID: 32053359]
  38. Langmuir. 2005 Jan 18;21(2):524-6 [PMID: 15641818]
  39. Nat Chem. 2012 Apr 15;4(6):503-10 [PMID: 22614387]
  40. Biopolymers. 2017 Jan;108(1): [PMID: 27858968]
  41. Acc Chem Res. 2021 Apr 20;54(8):1934-1949 [PMID: 33823579]
  42. Chem Rev. 2001 Oct;101(10):3081-111 [PMID: 11710063]
  43. Chem Soc Rev. 2010 Sep;39(9):3480-98 [PMID: 20498896]
  44. Nat Chem. 2014 Apr;6(4):303-9 [PMID: 24651196]
  45. Biopolymers. 2010;94(1):107-17 [PMID: 20091879]
  46. Lancet. 2004 Oct 9-15;364(9442):1343-60 [PMID: 15474138]
  47. J Phys Chem B. 2007 Jul 12;111(27):7812-24 [PMID: 17569554]

Grants

  1. R01 GM123508/NIGMS NIH HHS

MeSH Term

Nanotubes, Carbon
Peptides
Nanostructures
Isomerism
Catalysis

Chemicals

Nanotubes, Carbon
Peptides

Word Cloud

Created with Highcharts 10.0.0nanocoilsthreeoneresidueHresidueshydrophobiccatalyzedhydrolysisrateenhancementefficiencycatalyticsupramolecularnanostructuresreportconstitutionallyisomerictetrapeptidescomprisingglutamicacidEhistidinetwolysineKfunctionalizedside-chainS-aroylthiooximeSATOgroupsDependingorderaminoacidsamphiphilicpeptidesself-assembledaqueoussolutiondifferentnanostructures:nanoribbonsmixturenanotoroidsnanoribbonsnanostructuremodelsubstrateexhibitinggreatesthighestenzymaticCoarse-grainedmoleculardynamicssimulationsanalyzedunsupervisedmachinelearningrevealedclusterspocketsalongouteredgeprovidinginsightobservedFinallyl-substratepairenantiomericBoc-l/d-Phe-ONpsubstratestestedstudyhighlightssubtlemolecular-levelchangescaninfluenceultimatelyaffectSupramolecularPeptideNanostructuresRegulateCatalyticEfficiencySelectivityConstitutionalIsomersEnantioselectivityPeptidesSelf-AssemblySimulation

Similar Articles

Cited By