Smartphone Integration of Artificial Intelligence for Automated Plagiocephaly Diagnosis.

Ayden Watt, James Lee, Matthew Toews, Mirko S Gilardino
Author Information
  1. Ayden Watt: From the Department of Experimental Surgery, McGill University, Montreal, Canada.
  2. James Lee: Division of Plastic and Reconstructive Surgery, McGill University Health Center, Montreal, Canada.
  3. Matthew Toews: École de Technologie Supérieure, Department of Systems Engineering, Montréal, Canada.
  4. Mirko S Gilardino: Division of Plastic and Reconstructive Surgery, McGill University Health Center, Montreal, Canada.

Abstract

Positional plagiocephaly is a pediatric condition with important cosmetic implications affecting ∼40% of infants under 12 months of age. Early diagnosis and treatment initiation is imperative in achieving satisfactory outcomes; improved diagnostic modalities are needed to support this goal. This study aimed to determine whether a smartphone-based artificial intelligence tool could diagnose positional plagiocephaly.
Methods: A prospective validation study was conducted at a large tertiary care center with two recruitment sites: (1) newborn nursery, (2) pediatric craniofacial surgery clinic. Eligible children were aged 0-12 months with no history of hydrocephalus, intracranial tumors, intracranial hemorrhage, intracranial hardware, or prior craniofacial surgery. Successful artificial intelligence diagnosis required identification of the presence and severity of positional plagiocephaly.
Results: A total of 89 infants were prospectively enrolled from the craniofacial surgery clinic (n = 25, 17 male infants [68%], eight female infants [32%], mean age 8.44 months) and newborn nursery (n = 64, 29 male infants [45%], 25 female infants [39%], mean age 0 months). The model obtained a diagnostic accuracy of 85.39% compared with a standard clinical examination with a disease prevalence of 48%. Sensitivity was 87.50% [95% CI, 75.94-98.42] with a specificity of 83.67% [95% CI, 72.35-94.99]. Precision was 81.40%, while likelihood ratios (positive and negative) were 5.36 and 0.15, respectively. The F1-score was 84.34%.
Conclusions: The smartphone-based artificial intelligence algorithm accurately diagnosed positional plagiocephaly in a clinical environment. This technology may provide value by helping guide specialist consultation and enabling longitudinal quantitative monitoring of cranial shape.

References

  1. Semin Pediatr Neurol. 2004 Dec;11(4):301-4 [PMID: 15828714]
  2. J Craniofac Surg. 2004 May;15(3):368-72 [PMID: 15111792]
  3. Pediatrics. 2022 Feb 1;149(2): [PMID: 35059723]
  4. Acta Neurochir (Wien). 2019 Jun;161(6):1095-1098 [PMID: 31041593]
  5. Pediatr Radiol. 2002 Oct;32(10):700-6 [PMID: 12244457]
  6. Eur J Orthod. 2019 Jan 23;41(1):29-37 [PMID: 29617743]
  7. J Craniofac Surg. 2021 May 1;32(3):967-969 [PMID: 33405463]
  8. J Neurosurg Pediatr. 2021 Aug 13;28(5):497-501 [PMID: 34388721]
  9. J Neurosurg Pediatr. 2021 Mar 19;27(5):581-588 [PMID: 33740758]
  10. J Craniofac Surg. 2015 Nov;26(8):e770-3 [PMID: 26595002]
  11. J Craniofac Surg. 2010 Jan;21(1):20-4 [PMID: 20072027]
  12. Eur Radiol. 2014 Oct;24(10):2417-26 [PMID: 25038852]
  13. Childs Nerv Syst. 2017 Sep;33(9):1545-1552 [PMID: 28578511]
  14. Nat Commun. 2018 Dec 6;9(1):5217 [PMID: 30523263]
  15. J Plast Reconstr Aesthet Surg. 2020 Apr;73(4):723-731 [PMID: 31917189]
  16. AJNR Am J Neuroradiol. 2017 Apr;38(4):672-677 [PMID: 28183836]
  17. J Am Board Fam Med. 2022 May-Jun;35(3):475-484 [PMID: 35641051]
  18. Pediatr Radiol. 2018 Jan;48(1):21-30 [PMID: 29181580]
  19. Eur Urol Focus. 2021 Jul;7(4):710-712 [PMID: 34120881]
  20. Nat Commun. 2019 Mar 11;10(1):1096 [PMID: 30858366]
  21. Plast Reconstr Surg Glob Open. 2022 May 16;10(5):e4328 [PMID: 35702535]
  22. Pediatrics. 1996 Jun;97(6 Pt 1):877-85 [PMID: 8657530]
  23. JAMA Pediatr. 2013 Aug 1;167(8):700-7 [PMID: 23754213]
  24. J Craniofac Surg. 2015 Sep;26(6):1808-11 [PMID: 26267560]
  25. J Craniofac Surg. 2022 Jan-Feb 01;33(1):139-141 [PMID: 34519705]
  26. Plast Reconstr Surg. 2022 Jun 1;149(6):1209e-1223e [PMID: 35613293]
  27. Diagnostics (Basel). 2020 Jul 19;10(7): [PMID: 32707742]
  28. J Craniofac Surg. 2021 Nov-Dec 01;32(8):2736-2740 [PMID: 34231510]
  29. J Craniofac Surg. 1996 Jan;7(1):5-11 [PMID: 9086895]
  30. J Dev Behav Pediatr. 2017 Jan;38(1):67-78 [PMID: 28009719]
  31. Pediatrics. 2020 Sep;146(3): [PMID: 32868470]
  32. Arch Craniofac Surg. 2020 Apr;21(2):80-86 [PMID: 32380806]
  33. BMJ. 2015 Oct 28;351:h5527 [PMID: 26511519]

Word Cloud

Created with Highcharts 10.0.0infantsplagiocephalymonthsageartificialintelligencepositionalcraniofacialsurgeryintracranialpediatricdiagnosisdiagnosticstudysmartphone-basednewbornnurseryclinicn=25malefemalemean0clinical[95%CIPositionalconditionimportantcosmeticimplicationsaffecting∼40%12EarlytreatmentinitiationimperativeachievingsatisfactoryoutcomesimprovedmodalitiesneededsupportgoalaimeddeterminewhethertooldiagnoseMethods:prospectivevalidationconductedlargetertiarycarecentertworecruitmentsites:12Eligiblechildrenaged0-12historyhydrocephalustumorshemorrhagehardwarepriorSuccessfulrequiredidentificationpresenceseverityResults:total89prospectivelyenrolled17[68%]eight[32%]8446429[45%][39%]modelobtainedaccuracy8539%comparedstandardexaminationdiseaseprevalence48%Sensitivity8750%7594-9842]specificity8367%7235-9499]Precision8140%likelihoodratiospositivenegative53615respectivelyF1-score8434%Conclusions:algorithmaccuratelydiagnosedenvironmenttechnologymayprovidevaluehelpingguidespecialistconsultationenablinglongitudinalquantitativemonitoringcranialshapeSmartphoneIntegrationArtificialIntelligenceAutomatedPlagiocephalyDiagnosis

Similar Articles

Cited By (3)