Chronic ethanol alters adrenergic receptor gene expression and produces cognitive deficits in male mice.

A C Athanason, T Nadav, C Cates-Gatto, A J Roberts, M Roberto, F P Varodayan
Author Information
  1. A C Athanason: Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
  2. T Nadav: Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
  3. C Cates-Gatto: Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
  4. A J Roberts: Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
  5. M Roberto: Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
  6. F P Varodayan: Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.

Abstract

Hyperkateifia and stress-induced alcohol cravings drive relapse in individuals with alcohol use disorder (AUD). The brain stress signal norepinephrine (also known as noradrenaline) tightly controls cognitive and affective behavior and was thought to be broadly dysregulated with AUD. The locus coeruleus (LC) is a major source of forebrain norepinephrine, and it was recently discovered that the LC sends distinct projections to addiction-associated regions suggesting that alcohol-induced noradrenergic changes may be more brain region-specific than originally thought. Here we investigated whether ethanol dependence alters adrenergic receptor gene expression in the medial prefrontal cortex (mPFC) and central amgydala (CeA), as these regions mediate the cognitive impairment and negative affective state of ethanol withdrawal. We exposed male C57BL/6J mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and assessed reference memory, anxiety-like behavior and adrenergic receptor transcript levels during 3-6 days of withdrawal. Dependence bidirectionally altered mouse brain α1 and β receptor mRNA levels, potentially leading to reduced mPFC adrenergic signaling and enhanced noradrenergic influence over the CeA. These brain region-specific gene expression changes were accompanied by long-term retention deficits and a shift in search strategy in a modified Barnes maze task, as well as greater spontaneous digging behavior and hyponeophagia. Current clinical studies are evaluating adrenergic compounds as a treatment for AUD-associated hyperkatefia, and our findings can contribute to the refinement of these therapies by increasing understanding of the specific neural systems and symptoms that may be targeted.

Keywords

References

  1. Alcohol Alcohol. 2003 May-Jun;38(3):224-31 [PMID: 12711656]
  2. J Neurosci. 1990 Jul;10(7):2125-38 [PMID: 2165520]
  3. Neuropsychopharmacology. 2009 Apr;34(5):1135-48 [PMID: 18596687]
  4. Alcohol Clin Exp Res. 2012 Feb;36(2):351-60 [PMID: 21919922]
  5. Brain Behav Immun. 2019 Jan;75:208-219 [PMID: 30791967]
  6. J Neurosci Res. 2021 Sep;99(9):2046-2058 [PMID: 34048600]
  7. Alcohol Clin Exp Res. 2019 Aug;43(8):1695-1701 [PMID: 31141179]
  8. Biol Psychiatry. 2022 Jun 15;91(12):1008-1018 [PMID: 35430085]
  9. Neuroscience. 1993 Oct;56(4):1023-39 [PMID: 8284033]
  10. Pharmacol Ther. 2007 Mar;113(3):523-36 [PMID: 17303246]
  11. Alcohol. 2008 Mar;42(2):91-7 [PMID: 18358987]
  12. Psychopharmacology (Berl). 2020 Oct;237(10):3021-3031 [PMID: 32588079]
  13. Brain Res. 2016 Jun 15;1641(Pt B):189-96 [PMID: 26592951]
  14. Br J Pharmacol. 1976 Apr;56(4):403-11 [PMID: 769883]
  15. Neuropharmacology. 2015 Dec;99:735-49 [PMID: 26188147]
  16. J Neurosci. 2019 Oct 16;39(42):8239-8249 [PMID: 31619493]
  17. Alcohol Clin Exp Res. 2012 May;36(5):881-6 [PMID: 21981346]
  18. Neuropsychopharmacology. 2016 Jul;41(8):2062-71 [PMID: 26751284]
  19. Psychopharmacology (Berl). 2009 Jun;204(2):361-73 [PMID: 19189082]
  20. Behav Brain Res. 2009 Nov 5;203(2):151-64 [PMID: 19467271]
  21. Brain Behav Immun. 2023 May;110:125-139 [PMID: 36863493]
  22. Biol Psychiatry. 2015 May 15;77(10):859-69 [PMID: 25433901]
  23. Brain Struct Funct. 2015 Jan;220(1):541-58 [PMID: 24271021]
  24. Drug Alcohol Depend. 2017 Jun 1;175:24-35 [PMID: 28376413]
  25. Nat Neurosci. 2017 Nov;20(11):1602-1611 [PMID: 28920933]
  26. Neuropsychopharmacology. 2008 Jun;33(7):1724-34 [PMID: 17805311]
  27. Genes Brain Behav. 2019 Jul;18(6):e12562 [PMID: 30817077]
  28. Psychopharmacology (Berl). 2020 Nov;237(11):3337-3355 [PMID: 32821984]
  29. Neurobiol Stress. 2020 Dec 05;13:100284 [PMID: 33344735]
  30. Neuropharmacology. 2018 May 1;133:470-480 [PMID: 29471053]
  31. Br J Pharmacol. 2023 Apr 12;: [PMID: 37050867]
  32. Neurochem Int. 2007 Oct;51(5):323-7 [PMID: 17606313]
  33. J Addict Med. 2018 Sep/Oct;12(5):339-345 [PMID: 29664896]
  34. Neuropsychologia. 2008;46(7):2099-105 [PMID: 18201735]
  35. Neuroscience. 2006 Feb;137(3):1039-49 [PMID: 16298081]
  36. Psychopharmacology (Berl). 2010 Oct;212(3):431-9 [PMID: 20676608]
  37. Behav Brain Res. 2018 Feb 15;338:9-16 [PMID: 29030082]
  38. J Vis Exp. 2011 May 17;(51): [PMID: 21633328]
  39. Prog Neuropsychopharmacol Biol Psychiatry. 2015 Jan 2;56:66-74 [PMID: 25149913]
  40. Alcohol Clin Exp Res. 2020 Jul;44(7):1488-1496 [PMID: 32449942]
  41. Neuropsychopharmacology. 2023 Apr;48(5):821-830 [PMID: 36670228]
  42. J Neurosci. 2020 Jun 10;40(24):4773-4787 [PMID: 32393535]
  43. Alcohol Clin Exp Res. 2009 Feb;33(2):264-72 [PMID: 19032582]
  44. Prog Neurobiol. 2021 Apr;199:101952 [PMID: 33197496]
  45. J Neurosci. 2019 Jan 16;39(3):472-484 [PMID: 30478032]
  46. Arch Neurol. 1981 May;38(5):289-92 [PMID: 7224914]
  47. Int J Neuropsychopharmacol. 2013 Jun;16(5):1139-51 [PMID: 23195622]
  48. Am J Psychiatry. 2018 Dec 1;175(12):1216-1224 [PMID: 30153753]
  49. Alcohol. 2017 Feb;58:53-60 [PMID: 27624846]
  50. Brain Res. 2015 Dec 2;1628(Pt A):130-46 [PMID: 25529632]
  51. Brain Res. 2016 Jun 15;1641(Pt B):177-88 [PMID: 26607253]
  52. Alcohol Clin Exp Res. 2004 Dec;28(12):1829-38 [PMID: 15608599]
  53. Addict Biol. 2022 Mar;27(2):e13116 [PMID: 34856641]
  54. Neuropharmacology. 2016 Aug;107:1-8 [PMID: 26946429]
  55. Biol Psychiatry. 2020 Dec 15;88(12):910-921 [PMID: 32680583]
  56. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4165-6 [PMID: 23483010]
  57. Neurobiol Stress. 2020 Nov 30;13:100269 [PMID: 33344722]
  58. Neuroscience. 2020 Sep 1;443:84-92 [PMID: 32707291]
  59. Neuron. 2015 Aug 5;87(3):605-20 [PMID: 26212712]
  60. Naunyn Schmiedebergs Arch Pharmacol. 2019 Jan;392(1):1-18 [PMID: 30470917]
  61. Cereb Cortex. 1994 Nov-Dec;4(6):664-80 [PMID: 7703691]
  62. Alcohol Clin Exp Res. 2018 Mar;42(3):540-550 [PMID: 29265376]
  63. Alcohol Clin Exp Res. 2018 Jul;42(7):1281-1290 [PMID: 29687895]
  64. PLoS Comput Biol. 2022 Feb 17;18(2):e1009800 [PMID: 35176017]
  65. Handb Exp Pharmacol. 2018;248:239-260 [PMID: 29687164]
  66. Neurobiol Learn Mem. 2018 May;151:59-70 [PMID: 29649583]
  67. Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):7123-7128 [PMID: 29915053]
  68. Alcohol Clin Exp Res. 2015 Aug;39(8):1538-46 [PMID: 26207767]
  69. Neurosci Biobehav Rev. 2005;29(4-5):771-83 [PMID: 15890403]
  70. Pharmacol Biochem Behav. 1998 Jun;60(2):305-11 [PMID: 9632211]
  71. Alcohol Clin Exp Res. 2020 Aug;44(8):1529-1539 [PMID: 32573991]
  72. Neuropsychopharmacology. 2021 Oct;46(11):1918-1926 [PMID: 34168279]
  73. PLoS One. 2013 Jun 13;8(6):e66122 [PMID: 23785477]
  74. J Pharmacol Exp Ther. 2012 Nov;343(2):451-9 [PMID: 22904357]
  75. Neuropharmacology. 2021 Nov 1;199:108797 [PMID: 34547331]
  76. Brain Cogn. 2001 Jun-Jul;46(1-2):134-5 [PMID: 11527312]
  77. Neuropharmacology. 2021 Sep 15;196:108702 [PMID: 34246685]
  78. Int J Neuropsychopharmacol. 2014 Oct 31;18(2): [PMID: 25552433]
  79. Eur J Neurosci. 2013 Jun;37(11):1803-10 [PMID: 23551162]
  80. J Neurosci. 2008 Jan 9;28(2):369-75 [PMID: 18184779]
  81. Alcohol Clin Exp Res. 2013 Sep;37(9):1552-60 [PMID: 23731093]
  82. Mol Psychiatry. 2022 May;27(5):2502-2513 [PMID: 35264727]
  83. Neurobiol Learn Mem. 2019 May;161:1-11 [PMID: 30802603]
  84. Neuropsychopharmacology. 2013 Aug;38(9):1665-73 [PMID: 23467277]
  85. Pharmacol Rev. 2021 Jan;73(1):163-201 [PMID: 33318153]
  86. Psychopharmacology (Berl). 2018 Jun;235(6):1625-1634 [PMID: 29460163]
  87. Behav Brain Res. 2015 Sep 15;291:385-398 [PMID: 26048424]

Grants

  1. U01 AA013498/NIAAA NIH HHS
  2. R37 AA017447/NIAAA NIH HHS
  3. P50 AA017823/NIAAA NIH HHS
  4. P60 AA006420/NIAAA NIH HHS
  5. R01 AA021491/NIAAA NIH HHS
  6. R00 AA025408/NIAAA NIH HHS
  7. R01 AA029841/NIAAA NIH HHS

Word Cloud

Created with Highcharts 10.0.0ethanoladrenergicbrainbehaviorreceptorcognitivegeneexpressionmPFCCeAalcoholAUDnorepinephrineaffectivethoughtLCregionsnoradrenergicchangesmayregion-specificdependencealtersprefrontalcortexwithdrawalmalemicelevelsdeficitsHyperkateifiastress-inducedcravingsdriverelapseindividualsusedisorderstresssignalalsoknownnoradrenalinetightlycontrolsbroadlydysregulatedlocuscoeruleusmajorsourceforebrainrecentlydiscoveredsendsdistinctprojectionsaddiction-associatedsuggestingalcohol-inducedoriginallyinvestigatedwhethermedialcentralamgydalamediateimpairmentnegativestateexposedC57BL/6Jchronicintermittentvapor-2bottlechoiceparadigmCIE-2BCinduceassessedreferencememoryanxiety-liketranscript3-6daysDependencebidirectionallyalteredmouseα1βmRNApotentiallyleadingreducedsignalingenhancedinfluenceaccompaniedlong-termretentionshiftsearchstrategymodifiedBarnesmazetaskwellgreaterspontaneousdigginghyponeophagiaCurrentclinicalstudiesevaluatingcompoundstreatmentAUD-associatedhyperkatefiafindingscancontributerefinementtherapiesincreasingunderstandingspecificneuralsystemssymptomstargetedChronicproducesAlcoholAnxiety-likeCentralamygdalaMedialNoradrenaline/norepinephrine

Similar Articles

Cited By